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PREFACE

This thesis effort continues the development of the
Interactive Control Engineering Computer Analysis Package
(ICECAP). This investigation expanded functional
capabiljities of ICECAP involved in modern control theory.
As a result, ICECAP is now able to perform both modern
control functions and matrix operations in addition to
continuous time control functions.

I wish to express my sincerest gratitude to my thesis
advisors, Dr. John Jones and Dr. Robert E. Fontana. Their
encouragement, suggestions, and ready assistance have proved
to be the key successfulness of.this thesis. Especially,
Dr. Fontana who spent many hours in reviewing and correcting
my writing deserves my deepest appreciation. I also wish to
thank the other members of my thesis committee, Dr.
Constantine H. Houpis and Dr. Peter S. Maybeck, for their
efforts in reviewing and critiquing my thesis. Finally, I
would 1like to express my sincerely appreciation to my
fiancee, Kai, for her encouragement and constant love

thoughout my entire AFIT assignment.
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CHAPTER 1
INTRODUCTION
1. Background

Control systems design and synthesis are very
complicated engineering processes. There are many steps
involved in repetitive mathematical manipulations such as
those found in calculus, matrix algebra, transformations
between frequency and time domains, graphical plotting, and
probability and stochastic process characterization and
simulation. Conceptually, most of these computations are
very simple. However, they require a significant amount of
time and effort to perform. Thus, such calculations can be
tedious if accomplished manually. To allow control
engineers to concentrate on the critical aspects of their
design without spending a great deal of time on tedious
calculations and graphical techniques, tools such as
computer-aided design (CAD) programs are necessary.

Over the years, industries and universities have
developed several CAD programs to assist control engineers
and students. The Air Force Institute of Technology (AFIT),
like other wuniversities, has developed CAD research

programs for control system design and analysis. One of the

¥
b

most successful products of the project is TOTAL [2]). TOTAL

is an interactive software package for digital and
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continuous control system analysis and synthesis. It was
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initially developed by two AFIT students, Frederick O'Brien
[1] and Stanley Larimer [2].  Both students consolidated

several AFIT computer programs into TOTAL and hosted it on

the Control Data Corporation (CDC) Cyber computer at Wright-
3 Patterson Air Force Base (WPAFB), Ohio. In a later effort,
| Glen Logan [3] successfully transported TOTAL from the Cyber
F to a VAX 11/780, an AFIT/EN computer located in the T
Information Sciences Laboratory. His effort resulted in

improving the wuser interfaces for TOTAL and providing a

backup CAD capability, thus minimizing the impact of
system down time. Logan's work is known as VAXTOTAL. Other
efforts were recently accomplished by two students, Charles
‘: Gembarowski [4] and Robert Wilsom [5]. Both have improved

VAXTOTAL's interactive environment by incorporating many of

"I.."..'.. a ."'..‘I.l".".." S -'M' O LT
LA L i
LRI tels s a'e g 2d L

its routines into a highly structured and modular program

known today as ICECAP (Interactive Control Engineering

Lo 1

P ot ,
e te e P A R
N el
BRI IR

Computer Analysis Package), currently hosted on the VAX

11/780. Their efforts resulted in a new system which

provides both wuser 'friendliness'" and the ongoing
maintenance of the system. ICECAP is now able to perform an

entire range of continuous time control functioms.

2. Problem ;
Although TOTAL performs very well as far as problem

solving is concerned, it still has several deficiencies that

- reduce the overall effectiveness of the program. These -—_—




INTRODUCTION

deficiencies fgll into four major areas

2.1 Structure. TOTAL has a very tight structure which
makes the proéram difficult to expand. The reason for this
is that TOTAL is composed of many existing FORTRAN routines
[5]. Each one of them uses FORTRAN COMMON variables which
nmake the program very tightly coupled [4]. Additionally,
some external routines such as the CALCOMP and PLOT10
libraries are not identified [4]. This makes the transfer
of the program to another computer system difficult.
Finally, TOTAL is not well-documented in source code, thus
causing difficulty in improving and maintaining the system.

2.2 Usability. TOTAL is not well~designed with
respect to user interfaces. It has over 100 options in
which the user interactively enters and manipulates transfer
functions and matrices, while appling root-locus, frequency
and time response options. This makes TOTAL inconvenient
to use, especially for the inexperienced user.

2.3 Workload of Computer. Since the CDC Cyber is one
of the most heavily used computer facilities at WPAFB, it is
often saturated. When this happens, it may be impossible to
access the system. A backup capability using the VAX for
courses and design applications will serve to reduce the
Cyber workload.

2.4 Computational Problem. Lastly, and more

importantly, the 'number crunching' foundations of TOTAL are
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poor from a numerical prccision point of view. Nurerical

recision numerical stability and computational efficienc
1Y s A ¥

neced improvement. Complete rework of this core is required

for high dimension.

To overcome these problems, ICECAP was developed with -
certain stages. First, it was designed in a highly
> .

structured and modul ar fashion <o that subsequent

improverent and maintenance can be easily accomplished. .-

Additionally, it vas also designed to be a system which is S

1

easier to leary and uce for both expericenced and

3

inexperienced personnel. Finally, as a releaccd product,

ICECAP will ke rebosted on the AFIT/NEN Scientific  Support

c. 2 L
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feedback design using phase variable representation will be

developed and implemented. Notice that some of these

n.‘ 1'. Pete
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functions are already available in TOTAL. However, this
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thesis effort will develop routines that perform more
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4. Summary of Current Knowledge
Currently, there are existing computer programs
{2,7,8,15,35,36,39,41] that accomplish matrix operations and

the Dbasics of modern control design and analysis.
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Unfortunately, few of these programs provide the user with
an integrated package of design tools to perform the wide
range of computations required for extensive work in modern
control system design. In addition, most of these programs
are hosted on different computer systems.
5. Standards

The developed routines must provide results consistent
with testing requirements which shall be described in
Chapter 2. Additionally, the routines must be well-
documented for subsequent developments. Finally, they shall -
provide a well-designed human interface with so-call ‘''user
friendliness'" [6]. B
6. Approach

The following steps were followed during this thesis ;ii
investigation. g

1. Literature Research. Study and review of the -
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literature on CAD and synthesis in modern control areas.
This included study of tools investigated by previous theses
[1,2,3,4,5] as well as tools found during this thesis
investigation [7,8,15,35,36,39,40,41]. Additionally, the
current version of ICECAP and TOTAL's routines will be
closely studied in detail. Finally, the use of VAX/VMS
operating system must be understood.

2, Requirements Analysis, and Routine Selection.
First, determine which functions are necessary in the system
and which options are of primary importance and require
early implementation. Second, analyze the existing routines
studied in step 1 and select the most suitable ones. This
is based mainly wupon efficiency, numerical precision,
numerical stability, and adequate performance of routines.

3. Development and Implementation. This  phase

consists of the following steps :

3.1 Modify the routines selected in step 2 to meet
ICECAP's structure.

3.2 Develop the additional routines to meet the -
modern control functional requirements as -
described Chapter 2. :

3.3 Incorporate the modified and developed ﬁg}
routines into ICECAP. o

3.4 Test and modify if necessary in order to meet =
the testing requirements which are described i
in Chapter 2. e
4. Design Documentation. Document all routines ;i%
modified and developed during this investigation. This ]
e

6

.......................
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documentation will be included in Appendix B. This will
serve as a convenient and useful documentation for
subsequent development of ICECAP's project.

7. Material and Equipment

All materials and equipments required to perform this
study are currently available in the Information Sciences
Laboratory of the AFIT, School of Engineering.

8. Overview of Thesis.

Instead of including all source code lists of modules
developed during this investigation, this thesis consists of
major chapters and appendices which contain documentation
of the developed modules. This shall be useful for follow-
on efforts. (Note : A complete source code listing of all
developnent modules 1is maintained in the AFIT Information
Sciences Laboratory. It can be generated whenever needed by
utilizing the information contained in Appendix B.)

In the interest of continuity, the first two chapters
of this thesis are structurally similar to Wilson's thesis
[5]. A brief summary of each chapter and appendix is as
follows :

Chapter 2 summarizes the requirements definition that
were first described in Reference [5]. Major emphasis is
placed on the modern control functional requirements, since
this thesis develops and implements subroutines to meet

these requirements. The definition and the determination of

...............
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INTRODUCTION

priority for the modern control functional requirements
portion are also described in this chapter. Finally, the
testing requirements for the entire system are presented.

Chapter 3 reviews ICECAP's structure and investigates
the various routines and algorithms available for this
project. The specific selections for these items are
established in this chapter and the reasons for those
selections are discussed and analyzed.

Chapter 4 discusses the system design in a broad
overview fashion. The selected routines and algorithms are
ﬁ also presented explicitly. Finally, it describes the

process of incorporating the developed routines into ICECAP.

Chapter 5 details the ICECAP testing phase of the
investigation and presents the test results. The testing
philosophy 1is discussed followed by the testing of the
developed functions.

Chapter 6 presents the conclusions and recommendations

of this thesis effort.

Appendix A contains the railroad diagrams. This
railroad diagrams explain a formal description of the
acceptable language used in performing matrix operations.

Appendix B contains the subroutine descriptions of
non-trivial routines developed during this study.

Appendix C contains the ICECAP user's manual which
includes the overview of ICECAP, ICECAP commands, and

example problems.
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CHAPTER 2
REQUIREMENTS
1. Introduction

As mentioned in the Chapter 1, the main objective of
this study is to continue development and implementation of
ICECAP functional requirements involved in modern control
theory. For the sake of continuity, this chapter first
repeats the definitions of priorities and the annotation
standards of requirements as defined in Chapter 2 of [5].
Once these are established, the functional requirements
themselves are presented. These include those listed in
Chapter 2 of [5] and those established during this
s;. investigation. Additionally, the human engineering and
software engineering requirements described in Chapter 2 of
[5) are also repeated here. This serves as a quick reference

of 1ICECAP's current state for follow-on efforts. After

providing a historical perspective, this chapter addresses

the priorities that are structured so that ICECAP is capable

of solving fundamental modern control problems. Finally,
the testing requirements for the entire system are discussed. ??T
2. Definition of Priorities ;
The meanings of requirements priorities have been :‘W
categorized into one or more of three priorities in order to J;é
facilitate partitioning the entire ICECAP project into a ii
_ meaningful development. The definitions of these priorities ~lj

.............................
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| are described as follows : S
2.1 Priority One. This priority means that the .

requirement must be at least partially contained in the

initial program design in order to have a running program

with which to demonstrate both feasibility and capability.

This may involve both requirements that are already

l satisfied by VAXTOTAL [3] and requirements that are new to rj;
| ICECAP. This category generally includes all of the human

interface requirements, the incorporation of ‘'on-line"

E help/teach modules for the most important features required L
| for continuous time design and analysis, and software

engineering requirements. Continuous time features are
_i. .A; considered a higher priority than the discrete time features '::1
; because students are normally taught the fundamentals of o
E continuous control systems prior to the study of discrete ;?
‘ control systems. :;?j

2.2 Priority Two. This priority includes requirements

R R T .
2 e T e e
P W S R

that are at least partially implemented in VAXTOTAL [3] but
need not be initially implemented in ICECAP in order to - —

demonstate feasibility and capability. This category ffi

generally refers to matrix manipulation features, and

discrete time design and analysis features. ]
2.3 Priority Three. This category includes functional ROR
requirements needed to have a complete control system faj

computer-aided design package. It 1includes functional

Yy
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i requirements related to the control system design area

presently within the state of the art but not yet
implemented. Examples are the stochastic estimation and

control requirements.

R Y T e

3. Requirements.
Definition. ICECAP will assist the user in performing
ﬁ conventional, modern, and stochastic control system design
and analysis for both discrete and continuous systems.
Annotation Standards. ICECAP's requirements are

annotated in the following format : (priority

IR &

classification(s), status) [reference(s)]. The priority
- classification(s) is a number in the range 1-3. The status
i Qj; is reflected in a capital letter if the requirement has been
; fully implemented on ICECAP's structure; otherwise, the

letter appears in lowercase. The letters used are A, for
! Gembarowski [4]; B, for Wilson [5]; C, for Narathong [this
3 thesis]; D, for Armold [46]; (E will be for the next follow-
on effort, then F etc.). Requirements yet to be addressed
are assigned the status '"TBD" (To Be Determined). The
references refer to corresponding entries in the

bibliography. The interested reader can find the

theoretical principles that '"'spawned'" the system
! requirements by reading the cited references.
Listing. ICECAP's requirements can be grouped into

three main categories -- (1) functional, (2) human choR
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engineering, (3) software engineering. The specific
requirements (along with their associate priorities,
implementation status, and applicable references) are as
follows :
3.1 Functional Requirements. ICECAP shall provide the
following functional capabilities :
3.1.1 Conventional Control
- Open Loop Transfer Function (1,A) [34,37]
- Closed Loop Transfer Function (1,A) [34,37]
- Forward Transfer Function (1,A) [34,37]
- Feedback Transfer Function (1,A) [34,37]

- Steady State Response Analysis (1,A,B)
\é [34,37]

- Transient Response Analysis (1,A,B) [34,37]
- Partial Fraction Expansion (1,B) [34,37]

- Root Locus Analysis (1,A,B) [34,37]

- Laplace Transformation (2,TBD) [34,37,38]

- Inverse Laplace Transformation (2,B)
[34,37,38]

- Frequency Response Evaluation (2,B) [34,37]

- Time Response Plot (2,B) [34]

- Bode Plot (2,B) [34,37]

- Direct Polar Plot (2,TBD) [34,37] s

- Inverse Polar Plot (2,TBD) [34,37]

- Nyquist Criteria (2,TBD) [34,37] jf&l
- - Nichols Plots (2,TBD) [34,37]
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- Guillemin-Truxal Design (2,a,b) [34]
- Block Diagram Manipulation (2,A,B) [34,37]
3.1.2 Modern Control
Matrix Analysis (9,10,11,18,20,24,25,26,27,28,32]
- Matrix Arithmetic
-- Matrix right division (2,C)
-- Matrix left division (2,C)
-- Matrix transpose (2,C)
-- Matrix addition (2,C)
-- Matrix subtraction (2,C)
-- Matrix multiplication (2,C)
-- Raises matrix to powers (2,C)
- Basic Properties
-- Condition number in 2-norm (2,C)
-- Determinant (2,C)
-- Norm (2,C)
-- Rank (2,C)
-- Inverse (2,C)

-- ?seugoinverse with optional tolerance
2,C

-- Inverse Hilbert matrices (2,C)

-- Kronecker tensor product (2,C)
- Trancendental Matrix Functions

-- Arctangent (2,C)

-- Cosine (2,C)

-- Matrix Exponential (2,C)

13
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REQUIREMENTS

-- Natural logarithm (2,C)
-- Sine (2,C)
-- Square root (2,C)
- Decomposition and Factorizations
-- Cholesky factorization (2,C)

-- Eigenvalues and Eigenvectors (2,C)

-- Hessenberg or Tridiagonal Form (2,C)

-- Factor from Gaussian Elimination (2,C)

-- Orthogonal vectors spanning range (2,C)

-- Schur triangular form (2,C)
-- Reduced row echelon form (2,C)
-- Singular value decomposition (2,C)

Polynomial Operations

Addition (2,C)

Subtraction (2,C)

Multiplication (2,C)

Division (2,c¢)

Raise polynomial to powers (2,C)
Optimal Control Design [12,22,23,37]

- Algebraic Riccati Equation (ARE) solver
(2,0

- Riccati Differential Equation Solver
(2,c) [12]
1

Transfer Function via C(SI - A) B (2,C)
State Feedback Design [34]

- Phase Variable Representation (2,C)

14
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Plots (Z, W, S primary strip, time)
(2,TBD) [33]

o | Simulation (Performance Against a
"Truth Model") (3,TBD) {29,31]

N R T LIEE
AR

3.1.4 Stochastic Estimation and Control Design

A S
|

Kalman Filter Design for Continuous and
;: Discrete Time Measurements (3,TBD) [29]

?gg%ysis of Kalman Filter Design (3,TBD)

4 Ly
- e b riideata

Square Root Filtering (3,TBD) [29]

U-D Covariance Factorization Filtering -
(3,TBD) [29] T

S
Weiner Filtering (3,TBD) [29] L
Optimal Smoothing (3,TBD) [30] o
LQG Controller Design for Continuous and ~
Discrete Systems (3,TBD) [30,31] o
LQG/LTR Method (3,TBD) [31] e
Observer and Full-State Feedback Controller i

via Pole-Placement Methods (3,TBD) [30,31] =
Extended Kalman Filter Design (3,TBD) [30] :

Simulation (Performance Against a
"Truth Model') (3,TBD) [30,31]

3.2 Human Engineering Requirements. ICECAP shall be
user ''friendly" in that human factors will drive the design
of the human/computer interface [6].

3.2.1 ICECAP shall provide on-line assistance upon
demand. (1,2,3,B,C)
3.2.2 1ICECAP shall be command-oriented. It will

assist the user in formulating commands. This assistance

16
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h shall not be distractive. It shall not impede those users
‘% who do not need on-line assistance. (1,B,C)

3.2.3 1ICECAP shall provide instruction in the
various aspects of control theory through some sort of
teaching facility. (2,3,b)

3.2.4 ICECAP shall notify the users when they have

erred in providing input by using meaningful error messages.

(1,8)

3.2.5 ICECAP shall provide a facility for
providing meaningful and selective printed output as the .o
means of documenting the users' design of control systems. o
(1,B,C)

(j; 3.2.6 ICECAP shall provide a means of storing the t:
essentials of a design in progress so that the wusers may ;E
continue their designs at future sessions. (1,B,C) ;;i

3.2.7 1CECAP shall provide a capability for the i:
users to define command strings so that they may iterate a L
design without having to type in the same commands
repeatedly. This shall include a facility for the users to ;4
specify data as part of the command string. (2,TBD) iﬁj
3.3 Software Engineering Requirements. ICECAP shall o
% be designed and documented using sound software engineering ;;
;; principles such as those advocated in the software :
%3 engineering literature [6,17] so that the program can be
% - easily maintained and augmented. The following requirements -——\-
5 17 2
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address these concerns :

3.3.1 ICECAP shall be as portable as reasonable
(i.e. capable of being rehosted on other VAX's). (1,C)

3.3.2 1CECAP shall be modular. (1,A,B,C)

3.3.3 1ICECAP shall use loosely coupled modules as
much as possible. (1l,a,b,c)
4, Priority Definition and Determination

Due to time constraint, this one project cannot develop
the modules that solve all aspects of modern control
problems. Thus, it is necessary to facilitate partitioning
the modern control functional requirements [described in
Section 3.1.2] 1into priorities. The priorities are
structured so that ICECAP is capable of solving basic modern
control problems. Such functions are included in the
framework of priority one modules. Priority two then
follows and consists of the remainder of the modern control
modules. The following list indicates the initial priority
established for ICECAP's modern  control functional
requirements.

Priority One Modules. These are the priority one
requirements which partially come from Section 3.1.2. These
modules are essential for basic modern control system work.

- All requirements for matrix analysis
- Polynomial Operations

-1
- Transfer function via C(SI - A) B

18
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- Algebraic Riccati Equation (ARE) Solver fﬁ%

- State Variable Feedback Design iai

-- Using Phase Variable Representation igi

Generally, matrix and polynomial operations are ffj

considered part of modern control theory and are presented -;f

: here as priority one. The reason for this is that they are ig
E basic mathematical tools wuseful in many disciplines. A '-1
: system that provides assistance with this process would be ;;f
R: quite beneficial and warrants assignment of a higher i;?
priority than that associated with modern control. Transfer :Tj

function via C(SI - A)-IB, ARE solver, and state variable égf

feedback design wusing phase variable representation are ;;i

1 generally considered to be a fundamental modern control ::j
design concept and are usually taught before other advanced iif

modern control designs. They are therefore included in ?ii

priority one. :::

Priority Two Modules. This priority consists of the Eii

remainder of the modern control functional requirements ‘gﬁ

described in Section 3.1.2. These modules enhance advanced o

modern control design and provide additional design and

synthesis capability.

are representative of the kinds of essential functions for

the system to be useful as a modern control design tool.

i

]

These requirements may not be complete. However, they —
3 1

1
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5. Testing Requirements.
This section discusses the testing requirements of the

ICECAP that were first described in Chapter 2 of Reference

MMies e et e

[5]. Modifications are made to the modern control
functional testing requirements, 1in order to ensure that
the modules developed during this study provide validation

of numerical results.

5.1 Functional Requirements. The modern control
functional requirements that have been implemented shall be
tested using known test cases, such as those examples ,:

presented in References [8,12,34,39]. The numerical results

are expected to have small discrepancies due to the
numerical round-off error in computer wordlength. Note that ;A
ICECAP is hosted on a VAX 11/780 which has only a 32-bit

wordlength.

5.2 Program Flow. All developed programs shall be ;-j
tested to determine whether or not the program runs
properly. The program must transition to valid known
states. The program must not hang in an endless loop. The ;Tﬂ
ability to exit ‘''gracefully" from the program must be :
demonstated.

5.3 On-line Assistance. The ability of the intended ;ﬁﬁ

".::;:~:1
user to formulate the commands necessary to design and D
analyze a control system with on-line assistance that is :Eﬁ;
provided must be demonstrated. —e
WY
Ty
SN
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REQUIREMENTS

5.4 Output Capability. The ability to document and
store a control system design and analysis session
selectively and conveniently must be demonstrated.

6. Summary

The system requirements specification for the ICECAP
project 1is presented 1in accordance with Reference [5].
Priority <categories and the status of 1implementation
classifications were documented by Wilson's effort [5].
This thesis adds the modern control functional requirements
that were not initially included in previous development.
Additionally, the definition and determination of priority
for the modern control requirements portion are presented
explicitly. Finally, the testing requirements initially

defined by Wilson [5] are presented.
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4 CHAPTER 3
‘ ICECAP's STRUCTRUE, ROUTINES AND ALGORITHM SELECTION
1. Introduction
. In designing ICECAP, emphasis was placed on making the
system "user-friendly". For example, many of the prompting
features were integrated into the system so that a new user
; can quickly learn and really "enjoy'" using it.

In contrast to the past efforts [3,4,5], greater
emphasis 1is placed on expanding the functional capabilities

of the system. In particular, the modern control functional

TR T

capability is developed and implemented. This chapter begins
L with a review of the previous design as it relates to the
F \eo Human Interface and its component areas. It then discusses
the routine and algorithm selection which are somewhat
dictated by previous designs and other contraints such as
cost and procurement of the routines.
2. ICECAP's Structure

The design foundation for ICECAP relies on the

following requirements as stated in Chapter 2.

STV Y T T

-- The system shall be user-friendly.

-- The system shall be easy to use. }?;

? This section reviews the design of the system as its ;1'
relates to the Human Interface and its component areas. :

These areas have direct impact on incorporating the new .f;

Je "o

- modules on the system. Other areas of the design were -

22
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i discussed in [5). The specific areas reviewed are:

2.1 Program Control - how the user manipulates
execution of the program.

i 2.2 Help - on line assistance

2.3 Information Transfer - the program's response
to the user

2.4 Program Parameter Control - the user's ability
l to view and alter the system control parameter

2.1 Program Control

ICECAP was designed to have the user entering commands

B into the system which then cause the system to execute 1its
- function. Each word was selected so as to define the
intended action accurately. Each action has one or several
i \e words associated with it. For instance, the command words
necessary for plotting a root locus are 'PLOT ROOT LOCUS".
The system decodes the words and, once decoded, the commands
i are translated. The translation is then passed to a set of
- modules that actually execute the command. The overall
program transform was developed by Logan [3] as shown in
; Figure 1.
2.2 Help Capability
é ICECAP was designed to be user friendly. An aspect :
i which helps ICECAP become user friendly is the availability ;31
of on-line assistance. Help is provided in the sense of P ?
"help upon demand". The design structure for the help
» process was discussed in [5] and 1is repeated here for
? continuity. i:j
% 23 )
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2.2.1 1Invalid Command Response. If the wuser has

entered an invalid command, the system responds with a

ICECAP

| |

READ COMMAND INTERPRET COMMAND l EXECUTE COMMAND

PROVIDE ON-LINE
ASSISTANCE

FIGURE 1. ICECAP's FRONT-END STRUCTURE

message as to the nature of the error and then the user is
given the opportunity to reenter the erroneous portion.

2.2.2 Incomplete Command Response. If the user has
entered an incomplete command, the system responds with
choices for the next command word. The design structure
allows a short explanation of the nature of each of the
choices. The wuser then simply types in one of the 1listed
choices.

2.2.3 Complete and Valid Command. If the user has

24
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, entered a command that is both complete and valid, the
system responds by executing the command.
2.3 Information Transfer
The information that ICECAP transfers to the wuser
consists of data such as points on a root locus diagram,
frequency and/or phase response plot, and figures of merit.
; These data are conveyed to the user by using any of the
standard output available to the computer such as the CRT
and line printer. ICECAP also offers a choice of presenting
; the information in tabular or graphical form. Additionally,
it allows the user to review all outputs before printing out
on the line printer. Finally, ICECAP has the ability to
i \o store files of intermediate results so that the user can
- continue his/her work at other sessions.
2.4 Program Parameter Control
i ICECAP includes system parameters which control the
: execution of the routines within the system as, for example,

boundaries for root locus and frequency response plots, step

) sizes for calculating root locus, and output and input
selections. Some of these parameters were hard coded into

the software, but ICECAP still allows the user to change

these parameters as desired. The change will affect the
computations from that point on.
3. Routine and Algorithm Selection 3};

» This section discusses the selection of the new -
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i routines for matrix analysis and algorithm for other modern

: control functions.

| 3.1 Routine Justification and Selection

. There are existing FORTRAN subroutines that do matrix
operations, such as, the EISPACK [36] and LINPACK [35]
software packages. These two packages represent the state

; of the art in matrix computational methods. EISPACK is a

| package of over 70 FORTRAN subroutines for various matrix

eigenvalue computations. LINPACK is a package of 40 FORTRAN

subroutines for solving and analyzing simultaneous linear

equations and related matrix problems. The subroutines from

these two packages provide assistance with a basic

o mathematical tool that can be used to perform modern control - 9
functions. Presently, these two packages are already

integrated 1in several computer-aided design programs, for

1

’.¢‘o'.l . . ' ' s PR 0
] Al . . . . . - » .
I l S

example, CTRL-C [41], MATRIX x [40], LQGLIB [39], and MATLAB

[7]. Unfortunately, all of these programs except MATLAB are
commercial and the source codes are not released. MATLAB is

~ available without constraints. The program was originally * -

developed by Cleve Moler at the Unversity of New Mexico. It

,,
. 3

P

PRI PO |

was written as a convenient tool for computations involving

vy

matrices. Additionally, it also provides access to the -
LINPACK and EISPACK software. The capabilities range from
standard tasks such as solving simultaneous linear equations

AT and inverting matrices, through symmetric and nonsymmetric
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eigenvalue problems, to fairly sophisticated matrix tools
such as the singular value decomposition.

Based upon a comparison of cost and capabilities of

existing programs, MATLAB (with the LINPACK and EISPACK
subroutines) is considered the best choice. 1Its computation
routines will be used for lower-level modules while its
t: front-end (see Section 2 in Chapter &4 for more detail) can
be used to accept input matrices.
3.2 Algorithm Selection

Again, there are existing routines within TOTAL and

-1
ICECAP that solve the Riccati equation, compute C(SI - A) B,

and do polynomial operatioms. However, these routines are

somewhat out of date. For example, those routines that

solve Riccati equation in OPTCON [8] were coded based upon

the iterative algorithm ([22]. Presently, several methods

are developed based upon matrix theory. These methods can
handle a large class of problem very well [12]. This thesis
surveys and discusses various algorithms as follows

3.2.1 Riccati Solver. The Riccati equation plays _—
fundamental roles in the analysis, synthesis, and design of
linear-quadratic-Gaussian control and estimation systems as

well as in many other branches of applied mathematics. Due i

' .
NPT YT Sy

to the time limitations, this thesis only studied two of the
best algorithms, namely the Schur vector approach [12] and

the eigen number approach [42]. These two methods are quite -

.
RPN O R N
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ICECAP's STRUCTURE, ROUTINES AND ALGORITHMS SELECTION

3.2.3 Polynomial Operations. Similar to the case of
C(SI - A)- B computations, a new algorithm for polynomial
multiplication is developed. The routines in TOTAL are not
used since they do not match the MATLAB front-end, and more
importantly, those routines are poorly documented.

3.2.4 State Variable Feedback Design. This thesis
effort develops a new algorithm to perform this function.
This algorithm provides an adequate numerical accuracy
(see Section 4.4 in Chapter 5 for numerical results).
Chapter 4 presents this algorithm in detail.

4. Summary

This chapter discusses the previous system design and
the selection of new routines and algorithm. Two of the best
algorithms for solving ARE, namely the Schur vector approach
and the eigen number approach are discussed in detail. The

algorithm for C(SI - A) B function, polynomial

multiplication, and state variable feedback design are
developed. The detail of these algorithms are presented in

P the next chapter.
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CHAPTER 4
IMPLEMENTATION

1. Introduction

In the previous chapter, MATLAB and the algorithm to
solve ARE were chosen. The algorithms that are not
available are developed during this study. The chapter
first describes the process of incorporating the new
routines into ICECAP. It then discusses how to
incorporate MATLAB into ICECAP and follows by presenting
the developed algorithms in  detail. Finally, the
implementation of the developed routines is discussed.
2. Incorporating MATLAB

In the early design stage, ICECAP's structure was
designed to grow in a tree-like fashion so that new modules
could be easily added. However, the main driver of the
ICECAP, usually called the executive module, is not well
implemented. For example, it consists of too many
submodules. These submodules are contained in one big file.

Therefore, whenever a change is made to a single module, all

other modules must also be re-compiled. In addition to
this, the executive interprets the wuser command and
translates it to an option number. The option number is

then passed to the FORTRAN modules which in turn execute
this option number just as if it had been entered by the

user using TOTAL. This implementation makes the program run

30
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; slower. Also, the executive module calls the VAX library
- routine. This ties the program itself to the host
3

- computer, which violates one of the requirement objectives.

' Since it is not the purpose of this thesis to make a

major modification to the executive module, eliminating the

deficiencies discussed above are suggested for future
students. This thesis, however, does employ a new way for
incorporating the new modules. The subsection below

discusses MATLAB's structure and the approach wused 1in

incorporating it into ICECAP. .

Appendix A includes a railroad diagram which describes
various syntactic quantities suach as command, expression,
term, and factor. These quantities are used in performing -

matrix operations. The structure of the parser/interpreter

presented in Reference [7] is repeated in this thesis for
continuity. The structure of the parser/interpreter is - .
similar to that of Wirth's compiler [44]. The interrelation |
of the primary subroutines is shown in the Figure 2. The

detailed description of each subroutine can be found in -
Appendix B.

Subroutine '"Parse' controls the interpretation of each

statement. It calls subroutines that process the various -
syntactic quantities such as command, expression, term and Efﬂ
factor (see Appendix A for the definition of these &:ﬂ

quantities). A fairly simple program stack mechanism allows = -
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MAIN .
MA’I"LAB }—CLAUSE S
PARSE EXli’R TElle FAC'i‘OR '

STACK1 STACK2 STACKG

—— STACKP—PRINT ]
F f—— COMAND ;
{ }—WGECO

: : ——/GEFA
? —MATFN1—4——WGESL
——WGEDI

WPOFA

| IMTQL2
}——HTRIDI
b——MATFN2—————HTRIBK

}~—CORTH N
}—coMQr3
|——MATFN3 —————WSVDC o
|—WQRDC
 MATFN ———
}—WQRSL
}—FILES K
L MATFN5
|—— SAVLOD

FIGURE. 2 MATLAB'S STRUCTURE
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these subroutines to 'call'" each other recursively. The
four stack subroutines, namely STACK1l, STACK2, STACKP, and

STACKG, manage the variable memory and perform elementary

operations, such as matrix addition and subtraction. The

four subroutines MATFN1 though MATFN4 are called whenever

1
-]
¥

"serious'" matrix computations are required. They are

a Al

interface routines which in turn call the various LINPACK

and EISPACK subroutines. MATFN5 primarily handles the 1I/0

file operations. Two 1large double precision real single
arrays, STKR and STKI, are used to store all the elements of
matrices. Real numbers are stored in STKR and for complex S

numbers, the real parts are stored in STKR while the

et o
FREPLEPAN [ f

REREA) o
PURPT SRt ) a

‘. imaginary parts are stored in STKI. Four integer arrays,

voev e
g A
RSN

. et B

. R

. Tt
e . . PRI B H
A ki’

namely IDSTK, MSTK, NSTK, and LSTK are used to store the
names, the row and column dimensions, and the pointers into

the stacks, respectively. TOP and BOT integer variables are

o f

used to indicate whether the stacks are full or not. Figure 2

3 illustrates this storage schemne. The top portion of the

stack is used for computation working space while the bottom R
portion is reserved for saved variables. The figure shows
the situation after the line 4

A =<11, 12 ; 21, 22>, X =<3.14 ; SQRT(-1)> -
has been entered to the MATLAB program {(Notice that a .

semicolon is used to separate each row). The two variables,

et I Lo
LT T BV o e,
'," * . L (\'1. 'v' ‘ . ' 'l' ll:
. Sl e, S e, .

R I B BT SR AN SR ISP RPL IR S, A

- A and X, have dimensions 2 by 2 and 2 by 1 and so take up a -

NS
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TOP IDSTK MSTK NSTK LSTK STKR STKI F

3 O D O O O e, 4 || | £

(T e O D D e | I

|E| |L] 10 IB| |1} 12] || |21.00 | | _0.00 |
|El X 1E] 1Z] 1220 1= 1 |IZ.00 | |_0.00 |
IRl |A] [N} (D} (I (I [Z (2Z.00 | [_0.00 |
|1.E-15] | 0.00 |
| 07007 | | 000"
1707007 | | 000" | -
|TS00"| |~0.00"|
|URAND™| | 000 |

FIGURE. 3 MATLAB's DATA STRUCTURE

total of 6 locations. Notice that MATLAB accepts A and X by
rows, but it stores them internally by columns. The fiﬁ

subsequent statement 1involving A and X will result in

1
L
Cak

e a s

temporary copies being made to the top of the stack for use

B
D
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in the actual calculations. The four permanent names, EPS,
FLOP, RAND, and EYE, occupy the last four positions of the
variable stacks. RAND has dimension 1 by 1; 1its value is
1

provided by a random number generator. EYE has dimension
by =1 to 1indicate that the actual dimensions must be
determined later by context.

The modular structure of MATLAB (see Figure 2) makes it
possible to implement it on ICECAP. The implementation is
accomplished by using the syntax diagram for two specific
commands,. the DEFINE and DISPLAY commands. These two
commands were originally chosen by Gembarowski [4]. The
syntax diagram was developed as a tree-like structure
wherein each module displays the choices that are
appropriate for the command that has been partially
formulated. For instance, in formulating the command DEFINE
MATRIX, the Pascal procedure DEFINE calls Pascal procedure
DEFINE_PROMPT, 1if necessary, in order to prompt the user as
to wvalid choices for the second word. Once the wvalid
command string is formed, the MATLAB parser routine is
called directly and the user is in the MATLAB program which

is considered to be a lower level of ICECAP. In this level,

the user can utilize all MATLAB commands and all data
entered in this 1level are stored in the MATLAB's data i$3
structure. The reason for this implementation is that the

main menu is getting bigger as ICECAP 1is getting larger. -
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There is no place to store large matrices, such as 50x50
matrices, in ICECAP data structure. Therefore, it is
necessary to step down to a lower level.

The structure of MATLAB permits the user to define the
names of variables as opposed to ones strictly defined by
the program. This 1is very useful. For example, in
multiplying two polynomials, the user can multiply them and
save the result by simply giving it the new name. This
eliminates the copy command (i.e. copy POLYA to POLYD option
66 in TOTAL). Additionally, and more importantly, the data
will be allowed to pass from MATLAB's data structure to
ICECAP's data structure or vice versa. This gives the user
an ability to compute, for example, the open-loop transfer
function in a lower level and to use this transfer function
for other controller design in the wupper level without
retyping.

3. Implementing The Algorithm

3.1 Riccati Solver. It is not the purpose of this

? thesis to present the theory that supports the eigen number
if approach. The interested reader may refer to Reference
LY (42]. This section mainly considers numerical issues such
= as algorithm implementation, timing, storage, and stability.
i; To solve the optimal control, consider a dynamic system
._ X = AX + Bu ; Y = CX (1)

;E and a cost function

36
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. J = (XQX + uRu)dt (2) ?73
: where Q an$>R are weighting matrices ?
' The problem is to compute the feedback matrix, K, so that -
| u = KX (3) | 3

minimizes Eq (2) subject to the differential constraint of
; Eq (1). T
K is given by '

-1T 5 )
K = R BP (4) .
i where P is the solution to the steady state Riccati Equation f”?
T -1 T o
- AP + PA - PBR BP + Q = 0 (5) R
- G and the dimensions of matrices given by )
A (e —
N A,P,Q all are n-by-n ;:}
i B is n-by-r T
a R is r-by-r. .
The eigen number approach is used to solve Eq (5). The ??}
algorithm is presented as follows 8
4 1. Form _ _ .
-A D _:
- 2nx2n -
- S = € R
- T \
2 - A
» - - -

ﬁ' where -1 T

Acd

> ~ 2. Compute the eigenvalues of S i.e. Solutions to

Iu-sl = 0

. LT e e AR
B s e R
s 4 PR R PR
L R S e
. AR o et n
e tead i a e i h TN 4 4
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5

3. Select the n eigenvalues with positive real part

4. Form a polynomial of order n using the eigenvalues

selected in step 3; 1i.e.,

I n n-1
P (s) = s + a s + ....+as + a
n n-1 1 0
: 5. Form a 2nx2n matrix Z using the coefficients of the
’
4 polynomial in step 4 and S in step 1; i.e.,
n n-1 n-2 2nx2n
S +a S + a S + ... +aS + al = Z ¢€¢R
n-1 n-2 1 0
’
6. Partition Z as
- U Mo
nxn nxn
i s z -
A" N
_ nxn nxn_
7. Compute
2 -1
. P = M U
1
-1
P = N V
2
> -1
- P = -V U
3
-1
P = -N M
,. 4
D -~ o
- where P , P , P , P all are solutions to (5) ﬂE
- 0
K A unique solution of equation (5) for a positive 5;
)
- 7

definite P exists if the matrix Q is positive definite [34]. .

T
L, ot
R AP
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The inverse of M, N, V may not exist when Eq (5) is known to
be '"ill-conditioned" [12]. There is no guarantee that one of
those solutions computed in step 7 will be positive
definite. However, from the results of testing of the
algorithm, the positive definite solution is most 1likely
obtained with selecting n eigenvalues having positive real
part (step 3). If the positive definite solution is not
obtained, step 3 must be repeated. That is selects another
n eigenvalues and repeats step 4 thru 7. This process 1is
repeated until the positive definite is obtained. However,
the existance of a uniqueness of positive definite solution
condition should be checked before computing the solutions.
‘6. Good estimates of the condition number of U, M, and N -
with respect to inversion are computed by the MATLAB 1linear -

equation software with estimates being inspected during

computation. For an '"ill-conditioned Riccati equation" U,
M, and N may have no inverse. Methods for computing . &
solutions for such cases are discussed further in Reference 3
[48]. S

With respect to storage considerations the algorithm
requires at least two 2nx2n arrays. The overall process is
quite stable numerically (see Section 4.1.2 in Chapter 5)
and as indicated above if U, M, and N are not invertible, it
is still possible to compute the solutions.

Once the positive definite solution is obtained, the -

f. l‘lYAl‘
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feedback matrix, K, can be computed by using Eq (4). L

Then, the closed-loop matrix can be computed as

A

A - BK (6)

| cl -
where '
A 1is the closed-loop matrix
cl
: Finally, the closed-loop matrix can be used to compute the

closed-loop transfer function as

-1
] G (S) C(SI -A ) B (7
’ cl cl

MRIC is coded to solve this optimal control problem.
-1
3.2 The algorithm for C(SI - A) B provides the

_ S
1 \o
. numerator and denominator polynomials of the transfer
? function for a single-input single-output system of Eq (1).
i In order to compute the numerator polynomial, it 1is
| necessary first to have available the coefficients of the

characteristic polynomial, which is obtained by computing
, the determinant of (SI - A); i.e.,

n n-1 n-2
‘SI - A' = S + a S + a S + ...+a S + a
n-1 n-2 1 0
! Once the denominator is obtained, numerator coefficients can
; be computed as follows
T
- -

Lo
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b = CB

b = CAB + a CB

n-1 n-1
2
b = CAB + a CAB + a CB
n-2 n-1 n-2
etc.

This algorithm is short and simple since a FORTRAN DO
loop can generate b's. The subroutine TRFF is coded to
compute this C(SI -~ A)-lB function.

3.3 Polynomial Operations. The addition and
subtraction of polynomials are accomplished by calling

subroutine STACK2. Multiplication 1is coded wusing the

algorithm shown below :

n n-1 n-2
P (X) = X 4+ a X + a X + .... +asS+a
1 n-1 n-2 1 0
n n-1 n-2
P (X) = X + b X 4+ b X + + bS+b )
2 n-1 n-2 1 0 ]
o
-1 T "1 b, b, b,”| 1 b, b, b,
a,., a_ a_b_ a_b_ a__ b° 7 T
a,., = a _,a _b._ a_b . a _b, ig
L] - A’.:‘
. =
. '__'!
a, a a b _a b _, a b, i
41 }
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it

P (X) x P_(X)
1 2

:: n n-1 n-2
- X+ (a +0b )X + (a + a b + b )X + ... +ab
‘ n-1 n-1 n-2 n-1 n-1 n-2 00
The subroutine MPOLY 1is coded to perform this polynomial
t multiplication.

3.4 State Variable Feedback Design. Modern control
theory introduces the concept of using all the system states
*‘ to provide the desired improvement in system performance.

The state variable feedback concept requires that all states

be accessible in a physical system, but for most systems

\é this requirement is not met; i.e., some of the states are _,_....
inaccessible. A technique for handling systems with o
inaccessible states is presented in [31,34]. The state
variable feedback design method presented in this section is Eﬁﬁ

based upon achieving a desired control ratio for a single-
input single-output system; i.e., it is a pole placement
technique.

As mentioned previously, this thesis investigates the

state variable feedback design wusing phase variable

representation. The main objective is to provide a state
feedback gain corresponding to the desired closed-loop
transfer function. Due to the ease of using phase variable
representation, the state equation in physical wvariables is

transformed to a phase variable form. The solution is

L2
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transformed back to physical wvariables for actual
implementation on digital computer. The algorithm for this

is shown below :

1. Given A, B, C matrices, the open loop transfer
function, G (S) can be computed by

ol
w w-1
-1 Kg(S + b"”S «e.. +b S+ bo)
Z G (S) = C(SI = A) B = n ne|
ol S + a S + ... +a8 +a

n-1 1 0

KQN(S)

Q(S)

where Kg is an open loop forward gain and w ¢ n

The desired closed-loop transfer, G (S) is given by

cl
K N(S)
G (8) =
cl Q (8)
cl
n A n-1 A A
where Q () = S 4 a S + ...+aS+a
cl n-1 1 0

2. The system error is defined by

e(t) = r(t) - y(t)

For a zero steady state error,e(t), = 0, the steady T
state ouput must be equal to the input; i.e.,
y(e),, = r(t)

thus, K, can be computed as

43
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3

K a n-th state feedback
n

variable form.

where is

Compute the transformation matrix, T,

as

n

T = AT + a B
n-1 n n-1
T = AT + a B

etc.

T
K

#L
K

-1
T

MODERN is coded to perform this state

design function.
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4. Incorporating the Developed Routines into ICECAP
4.1 Riccati Solver. To incorporate subroutine MRIC
into ICECAP, a new command was added to the ICECAP second ;E:

level menu. At this level, most of the commands are used to

3 display results. For example, commands like DISPLAY SPECS,
DISPLAY EQUATION are used to signal the FORTRAN modules to
K do computations and display results. With the same idea, T
DISPLAY RICCATI will signal MRIC to solve the Riccati
equation. Additionally, if the solution is positive
definite, MRIC will automatically compute the feedback
matrix gain and the closed-loop matrix. The closed-loop
matrix then can be used to compute the closed-loop transfer
function by utilizing the subroutine  TRFF. This -
implementation avoids adding too many commands into the
main menu. T
-1 o
4.2 C(SI - A) B function. TRFF is implemented in e
ICECAP in a manner similar to that used for the Riccati
solver routine. The command was chosen to be TRANSFER/F.

This command is again added to the second level menu.

4.3 Polynomial Operations. Unlike MRIC and TRFF,

polynomial operations are implemented directly in MATLAB.
That 1is, all polynomial operations will take place in the
MATLAB parser routines. This implementation was used to O

avoid adding another command to the ICECAP menu.

b5
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i
. [

E Additionally, the user 1is allowed to defined polynomial ;J
names and to perform polynomial operations sequencially |
without laborious separate steps.

4.4 State Variable Feedback Design. The  MODERN =
subroutine 1is implemented in ICECAP in the same manner as -
MRIC.and TRFF. The command was chosen to be MODERN. Again,
two parts of command string, namely DISPLAY MODERN, must be -
formulated. MODERN 1is called directly and the user can -
then perform state feedback controller design wusing the
MODERN subroutine. -

At this point all development routines have been

incorporated into ICECAP. Figure 4 shows a summary
structure chart of the system's software construct. _—
| | C
‘ ICECAP l i
'—_J_—__I I'—_J__—I
l MATLAB l ‘ TOTAL '

l
RICCATI SOLVER |

STATE VARIABLE -1
FEEDBACK DESIGN C(ST-A) B & DETERMISTIC B

REGULATOR DESIGN
|

FIGURE 4 MODIFIED ICECAP'S STRUCTURE CHART o
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5. SUMMARY

In this chapter MATLAB's structure and the
implementation of MATLAB in ICECAP were discussed. Details
on specific commands of MATLAB were not presented. Those
who are interested in MATLAB commands may refer to Appendix
C and Reference [7]. Additionally, the algorithms of
special routines were presented. Deeper understanding of
the algorithms can be obtained from References [42,47].
Finally, implementing of the developed routines on ICECAP
were presented. The details of each subroutine are shown in

Appendix B, Subroutine Descriptions.

b7
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CHAPTER 5

TESTING AND RESULTS - }.j
1. Introduction i;ﬁ
The testing of the MATLAB program and the o
development routines was accomplished concurrently with _
subroutine code development and implementation. As problems ;
were discovered, they were analyzed for sources of error, :»:
and solutions were developed and implemented. These aij
solutions were tested for problem corrections prior to ;:;j
continuing with development. In this manner, errors were :i@
not accumulated, thus making it much easier to accomplish }&?
final testing. o
—
This chapter discusses the testing of the integrated =g
part of ICECAP. The first section begins with testing Eﬁi
philosophy. The next section deals with testing of the Ség
ICECAP~-MATLAB portion which 1includes the initialization T
routine, command interpreter, commands and functions, and 7]
help module. The final section deals with testing and the
validation of numerical results from the Riccati solver, - -9
C(S1 -~ A)-lB function, polynomial operations, and state Lff
variable feedback design routines. % €
2. Testing Philosophy fﬁg
Testing of a software system is the process of Eéﬁ
evaluating the performance of the program to insure that it ;33
is functioning as 1intended. Testing 1is not always a ‘z:
]
48 -:'-'t{':Ii
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distinct entity or process, rather it usually overlaps with
other phases of development such as design and

implementation. In this development, testing is

[T
A
Aa o’ e -

accomplished to insure that the results obtained conform to

"™

the ICFECAP design goals. Additionally, results using the ]
-1 -
Riccati solver, C(SI ~ A) B function, polynomial operations,

and the state feedback design function must conform to the

results obtained from other verified control system design
program such as LQGLIB [39] using standard examples of
Reference.[7,12,34]. The test process used for this project
is as follows

* Verify syntax of routines

* Accomplish manual logic analysis to insure program
as written approaches problem in proper way.

* Trace through code with known variables and known
results to insure the coding produces the desired T
results. e

* Display program variables at key spots to insure
they agree with the precalculated number/results.

These methods provides an efficient means of detecting 1;5
program errors and instituting corrections. The testing _.-
process and results are now discussed. .}7
3. Testing ICECAP - MATLAB Portion. ‘

3.1 Initialization. The testing of the initialization --,
module is accomplished in two steps. First the program 1is
run to verify that the initialization module sets various

control flags as well as setting variables to their initial -

k9
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values correctly. The results are satisfied when all
initial wvalues of variables and control flags are properly
established. Second, the following areas are evaluated for

the terminal initialization.

* Screen Clear ~ 1indicated by screen clearing
before any other actions.
* Highlight and ~ 1indicated by proper part of menu
Nohighlight being highlighted.

Again, the results are verified.
3.2 Command Interpreter. The command interpreter is
tested in the following process :
* First line of instructions properly displayed
* Menu displayed
* Prompt displayed

* User cannot backspace past point where string has
zero length.

* User can use either upper or lower case letters.

* Prompt redisplayed if command is incorrect.

* Error message displayed for incorrect command.

* User can use multiple commands.
Results : All of the above characteristics are confirmed
'good'.

3.3 Commands and Functions. The following commands and

functions are tested.

- Commands

* HELP - Help options are displayed.

50

.................................................................
................................

.......................
............

........................

AP T L i SR e e o g T T T = T T T e i e e o e e = o~ = o~ o~

2




TR ————~ T TTTT—————— e—. B Ty ——— _‘v‘_—",

) e
- TESTING AND RESULTS o
K Lo
‘| * KILL - Erase all variables, except EPS, FLOP, -
: EYE, and RAND,
* EXIT & § - Terminates MATLAB level and return :
: the user to the system. y
. * LONG - The output of 15 digits accuracy is 1
: displayed. ]
* SHORT - The output of 4 digits accuracy is " ]
displayed. :
-4
L * MENU - The commands and functions are 1
displayed. :
* DIR - All current variables are displayed. 3
° * WHY - Various answers to any questions are aotd
: displayed. 1
* CLEAR - The screen is clear. ;fﬂ
Results : All of the above commands are confirmed 'good'. ﬁ
F -t
a \e - Functions. Using A, a real matrix of appropriate -]
: order and x, a number. o
% INV(A) - inverse Ifﬁ
ﬁ * DET(A) - determinant nasd
* COND(A) - condition number ;ﬁ}
* RCOND(A) - a measure of nearness to :
N singularity; 1i.e, if A 1is well
® conditioned, RCOND(A) is near 1.0.
3 If A 1is badly conditioned, ~ —
- RCOND(A) is near 0.0. S
* EIG(A) - eigenvalues and eigenvectors fi}
- )
° * SCHUR(A) - Schur triangular form R
3 T
* HESS (A) - Hessenberg or tridiagonal form o
* POLY(A) - characteristic polynomial ﬂi%
5 N * SVD(A) - singular value decomposition h
s y ..
E 51
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; * PINV(A,EPS) - pseudoinverse with optional
) tolerance
: * RANK(A,EPS) - matrix rank with optional
. tolerance
i * LU(A) - factors from Gaussian elimination
* CHOL(A) - factor from Cholesky
factorization
* QR(A) - factors from Householder
4 orthogonalization
* RREF(A) - reduced row echelon form
* ORTH(A) - orthogonal vectors spanning range
N of A
|
. * EXP(x) - E to the x
* LOG(x) - natural logarithm
. \ ; * SQRT(x) - squart root
X4
- * SIN(x) - sine
g * COS(x) - cosine
- * ATAN(x) - arctangent
|
5 * ROUND(A) - round the elements to nearest
: integer
; * ABS(A) - absolute value of the elements
] * REAL(A) - real parts of the elements
. 1
- * IMAG(A) -~ imaginary parts of the elements T
i * CONJG(A) - complex conjugate .fﬁ
’ * SUM(A) - sum of the all elements -;]
g % PROD(A) ~ product of all the elements iﬁi
5 * DIAG(A) - extract or create diagonal '{;
; matrices -
? B * TRIL(A) -~ lower triangular part of A iﬂﬁ
?: 52
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a * TRIU(A) - upper triangular part of A
- * NORM(A,F) - norm with F = 1,2 or 'infinity'

= * EYE(M,N) - a M by N matrix with 1's on the

i diagonal and zero elsewhere.
* RAND(M,N) - matr?x of M by N with random
entries
* ONES(M,N) - matrix of all ones
E * MAGIC(N) - interesting test matrices

* HILBERT(N) inverse Hilbert matrices

* ROOTS(C) - roots of polynomial with

; coefficients C

, * DISPLAY(A,P) - print base P representation of A
* KRON(A,B) - Kronecker tensor product of A

and B

2 (e

4 * PLOT(X,Y) - plot Y as a function of X
* RAT(A) - find 'simple’ rational

approximation to A

stores all the current variables
in a file

SAVE('file')

‘B
*

* LOAD('file') retrieves all the variables from

5 a file

; * PRINT('file',X) - prints X on a file

- * DIARY('file') - makes a copy of the complete

a session

5 Results : All functions above perform properly.

® 3.4 Help Module. The help module provides on-line

; -]
g assistance to the user. It is tested with the following o
- attributes _Eﬁ
". B ) %
| 53 ]
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* Program responds to request with correct information;
indicated by verifying that proper Help information
is displayed.

d
.
b
P,
r.
r.
[
b
b

* User can abort Help by inputting a '$' at the end of
Help information; indicated by return to command
level.
Results : The above attributes are tested satisfactory.
4. Testing ICECAP - Development Modules.

4.1 Riccati Solver Module Testing. The Riccati solver
testing scheme 1involves additional testing for numerical
accuracy, speed, and numerical stability in addition to its

logical evaluation of program flow and function. The

following characteristics are tested in the Riccati solver

module.
l’ * Accepted input matrices' names correctly
* Numerical results are correct -- indicated by

comparison with data from known source or substitute
back to original equation.

* Help facility is working properly -~ indicated by
Help information is displayed correctly.

Results : The above characteristics test satisfactory.
4.1.1 Numerical accuracy and Speed testing. To
achieve this testing scheme, the Riccati solver module and

MATLAB program were transported to a better and bigger

machine (better in a sense of machine speed and bigger in a
sense of longer wordlength). The CDC Cyber 750 is used to

serve this testing purpose. It also hosts the LQGLIB [39]

PSP T IIT

software which solves the Riccati equation using the Schur

vector approach. The results from both programs can be
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compared both in speed and in numerical accuracy.
The example used to test is taken from a paper by
A.J. Laub [12]. The Riccati equation is
T -1T
AP+PA-PBR BP+Q = 0

where all matrices are of order 9x9 and are given by

™1 0 0 0 0 0 0 0 0"
1. 0-1 0 0 0 0 0 O
0 0-1 00 0 00 O
0 01 0-1 000 0
A = 000 0-1 000 0
00001 0-1200
0 00 0O O0-10 0
000 0O0O0 1 0-1
0 0 0 0 0 0 0 0-1_
- _
0
1
1T 0
D =BR B = 1
0
1
0
— 1_
0
10
0
10
Q = 0
10
0
10
— 0—
55
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The 15 digits accracy of P from LQGLIB and MATLAB are

compared in Figure 5. The solutions agree to at least 10

significant figures. Notice that only the first column of P

is compared. The complete solution is available from the
author.
LQGLIB using MATLAB using
The Schur Vector Approach The Eigen Number Approach
1.363020693809055 1.363020693808967
2.617215472388267 2.617215472388186
-.705427341233047 -.705427341232968
.936859701733908 .936859701733909
-.293666431891451 -.293666431891415
.477353860639198 .477353860639186
-.197375089533067 -.197375089533054
.211211652357913 .211211652358004
-.166551831151505 -.166551831151530

FIGURE 5 SOLUTIONS TO RICCATI EQUATION 9x9 SYSTEM

Substitution of a full 15 decimal place solution from LQGLIB
into the Riccat equation gives a residual on the order of
10-14whi1e the residual for the solution from MATLAB is on
the order of 10-..26 Both programs used FORTRAN5, but MATLAB
used double precision while single precision 1is wused in
LQGLIB (Note that it is not practical to convert double
precision to single precision for the entire program). For

a speed comparison, LQGLIB is much faster than MATLAB, which

we shall see in Table 1. The speed of MATLAB is very slow
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since it has to multiply matrix of order 2nx2n n times,
which 1is considered to be the most time consuming part of
the algorithm (see Table 2). This is probably the worst
aspect of algorithm.
TABLE 1
A TIME COMPARISON OF LQGLIB AND MATLAB

MATRIX SIZE CPU (sec.)
LQGLIB 2x2 0.007
| 9x9 0.175
20%20 1.444
MATLAB 2x2 0.069
9%9 4.497
20%20 62.440
TABLE 2

TIME ELAPSED IN EACH PROCESS RUN ON VAX 11/780

Matrix| Form R and compute |Sort eigenvalues Matrix -1
size eigenvalues and form polynomial| Multiply|P=M U
in sec in sec in sec in sec
9x9 7.20 0.05 5.64 0.32
20x20 7.21 0.15 135.75 1.37
30x30 23.39 0.27 778.11 4.15 ~
40x40 54.95 0.51 2770.91 9.07 -
50x50 106.22 0.80 9402.13 18.95 -
- 4
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k 4.1.2 Numerical Stability Testing. The example

used to test is taken from the same source. All nmatrices

are of order 20x20 and are given by

, -2 1 0 o 1
, 1 0
E; 0 0
A = ) )
0 0
0 1
1 0 0 . 0 1 -2
-1 T
D = BR B = 1 .
Q = 1 —

The solutions were computed by MATLAB and checked against
the solution from LQGLIB. The solutions agree to at least
12 significant figures. They are shown in Figure 6. —

th
A higher order Riccati equation, for example 50 order,

was also tested on VAX 11/780 since the Cyber has a

limitation on the allocated core memory. The solution was E
substituted 1into the Riccati equation. The residual is on ]
the order of 16? This is due to a 32 bits wordlength of
the VAX, for a large system, the accuracy begins to loose. -4:
The numerical solutions are available from the author.

A comparison of the Schur vector approach and the eigen
number approach is summarized in Table 3. - 4
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]
LQGLIB using MATLAB using =
The Schur Vector Approach The Eigen Number Approach i_;
p = .475050712641757 p = .475050712641716 ;
11 11

p = .503886212983314 p = .503886212983235 ]
12 12 ,
i 4
p = .171194090783836 P = ,171194090783858 ]

119 119 :
p = .226250904062361 p = .226250904062364 -
120 120 -
FIGURE 6 SOLUTIONS TO RICCATI EQUATION 20x20 SYSTEM B
—
-
TABLE 3 .
A COMPARISON OF ;;;
THE SCHUR APPROACH AND THE EIGEN NUMBER APPROACH ‘;?
Schur method Eigen number method ]
Speed fast slow S
Storage at least two 2nx2n arrays same -
Reliability handle up to 100 order same ;?J
Solution no guarantee of symmetry [12]| symmetric guarantee ;?E
# of solutions | produces one solution produces all solutions :
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TESTING AND RESULTS i
Since the Riccati solver module was also programmed to o
perform the optimal control function, the test for this K
particular part is conducted below : T
Problem 15-2 on page 714 of Reference [34] is used. The
problem statement is as follows -
. -0 1 10 1 0 Lo
X = X + Bu; B = ; B = |
=2 -3 1 0 2 0 1 -]
_ _ 1 0 1 0 :
Y = |1 0_|X;Q = ; Q= ;2 =1 -
a 0 0_ b 0 1 S
(a) Find the feedback coefficient matrix for this system ;ﬁ
.
(® for each matrix B. Obtain solutions for each matrix Q —
- = 1
indicated. (b) For the matrix B , compare the time responses ;lﬁ
1 o
for a unit step input. :{i
e,
The testing procedures are —
. -
1. DEFINE MATRIX 1i.e. enter A, B, B, Z, C, Q and Q E
1 2 a b 1
2. DISPLAY RICCATI i.e. enter the names of input 3
matrices. -
3. DISPLAY TRANSFER/F 1i.e. compute closed-loop ;
transfer function
4. COPY OLTF CLTF i.e. closed-loop transfer function
must be in CLTF {
~--3
5. DISPLAY SPECS 1i.e. displayed fiqure of merit. o
6. DISPLAY EQUATION 1i.e. display the output Y(t) with -
unit step input. -

et e A et T e, e . . o
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5 ]
The solutions for part a) are -
Using B , Q gives O
0.09850415 0.00742327 R
P = s
_ 0.00742327 0.00155601 _ y
:'-3
~ 0.98504158 3
K = -
_ 0.07423273 _ o
Using B , Q gives :
2 b ."f':
~ 0.77288396 0.09824936 — o
P = -
_ 0.09824936  0.19168385 _ T
K 1is the same as X
where P is the solution to Riccati equation O
Q‘ K is the feedback matrix gain -
. .
The solutions to part b) using B ,Q are shown in Figure 7. e
a
The results agree to the solutions given on page 729 [34] to
at least 6 significant figures. iﬁ;
- L
4.2 C(SI - A) B Module Testing. To verify the o
validation of this module, the example taken from page 445 of
Reference [34] is used. The problem statement is as follows:
-
- . -2 0"~ 1 ]
iy X = X + u =
' __-1 -1 _ _ 1 _ .

Determine the transfer function Y(s)/U(s).

<

]
7
o
[
L
>

Y SRS ¢

The test procedures are

MR RAGAINNS
)
!

s
o

T
!
|
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CLOSED-LOOP TRANSFER FUNCTION (CLTF)

CLK= ( CLNK/CLDK )= 10.0
CLTF (S) NUMERATOR

I CLNPOLY (1) CLZERO(I) o
1 ( 1.000  )s** 1 ( -3.000 ) + J(  0.000E+00) .

2 ( 3.000 ) CLNK=  10.00 |
CLTF (S) DENOMINATOR ]
| I CLDPOLY(I) CLPOLE (1) L
i 1 ( 1.000  )S%* 2 ( -9.7764 ) + J(  0.000E+00) =y
. 2 ( 12.85  )s** 1 ( -3.076 ) + J( 0.000E+00) Cd
3 ( 30.07 ) CLDK=  1.000 ]
=
~ CONTINUOUS TIME RESPONSE FOR CLTF(S) —
Lo WITH STEP INPUT OF STRENGTH =  1.00000 . 4
RS
THE TIME FUNCTION IS R
F(T) = D

-1.0347 EXP(-9.7743 T) .
0.36921E-01EXP(-3.0761 T) ~ -4
0.99779 EXP(0.00000E+00T) s

CONTINUOUS TIME RESPONSE FOR CLTF(S)

WITH STEP INPUT OF STRENGTH =  1.00000 =
RISE TIME: TR= 0.211244 -~
DUPLICATION TIME: TD= 0.497606 o
PEAK TIME: TP= 0.670213 e
SETTLING TIME: TS=  0.354482 S
PEAK VALUE: MP=  1.001000 DS
FINAL VALUE: FV=  0.997784 ‘

FIGURE 7. THE TIME RESPONSE OF UNIT STEP INPUT
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1. DEFINE MATRIX i.e. enter A, B, C —
e 2. DISPLAY TRANSFER/F i.e. compute a transfer |
Y function based upon A, B, C matrices
.
i Note: The system will prompt with a message '"ENTER YOUR R
- A,B,C,D MATRICES :". D is a direct transmission matrix. For
{ this example, there is no D matrix. The system will assume D
k equals O (its default value). The output is shown in Figure 8. )
: -
P' .. . 1
4 SRR
! OPEN-LOOP TRANSFER FUNCTION (OLTF) ",
3 OLK = GAIN*(OLNK/OLDK)=  1.00 ]
& GAIN=  1.00 S
OLTF(S) NUMERATOR -
I OLNPOLY (1) OLZERO(I) -
1 ( 1.000 )S** 1 ( -1.000 ) + J( 0.000E+00) DOy
2 1.000 ) OLNK= 1.000 L
OLTF(S) DENOMINATOR -
I OLDPOLY(I) OLPOLE(I) .
1 (  1.000 = )s** 2 ( -2.000 ) + J( 0.000E+00) o]
2 3.000 )S** 1 ( -1.000 ) + J( 0.000E+00) o
3 ( 2.000 ) OLDK= 1.000 R
FIGURE 8. THE OPEN-LOOP TRANSFER FUNCTION - 1
The result 1is exactly the same as the one given in the ;f
"
example [34] (cancel the zero and pole at -1.000). _
4.3 Polynomial Operations Module Testing. This function -5ﬂ
was tested by using the procedure summarized below: ﬁ:
1
1. DISPLAY MATRIX 1i.e. go to MATLAB level =
)
63 ]
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E A 2. Enter the coefficients of polynomial from high to low.
2
X 4+ 2X 41 —m» A=<1 2 1>
x2+ X + 4 ——m—p B=<1 4 4>

3. Performs the operations
A*¥B, A+B, A-B, A**3, etc.

The results are as follows

..........................................
" Pl WP R AP MU S W WA AP 1. N

X = A*B : X =1 6 13 12 4

Y = A+B : Y = 2 6 5

Z = A-B : Z = -2 -3
W = A¥*3 : W = 1 6 15 20 15 6 1 Pov
The results are checked against the results from TOTAL ;3;
. (using polynomial options, the polynomial operations on :z:
- \e TOTAL have proved to be reliable polynomial operations). -’2
E; The results are confirmed 'good'. ??
2 4.4 State Feedback Design Module Testing. To test this i:i
ﬁ module, the example on page 457 of Reference {34] is wused. X A
iﬁ The problem statement is as follows: 'f
? For a system shown below :i
t + L L L L =
SV R gy I"’»l::';‘l"'Tﬁ N N e A
- F — T
v v

- E f _y_
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ﬁ determine a feedback matrix gain K for a desired closed-loop
E transfer function below:
5 Y(S) 100(S + 1.4)(S + 2)
I R(S) S + 755 + 3608 + 710S + 7045 + 280

The testing procedures are
@ 1. From the block diagram, determine A, B, C matrices
2. DEFINE MATRIX 1i.e. enter matrix A, then B,then C

3. DEFINE CLTF i.e. enter the desired closed-loop
transfer function (CLTF) model

4. DISPLAY MODERN i.e. compute the feedback gain K
Note on step 1

One may determine A, B, C as follows:

X = X . X = -X+U
1 2 5 5
X = -X+X+2X
2 2 3 3
X = -5X%+X
3 3 4
X = -3X+ X+ 1.4X
4 4 5 5
From these equations, one may rewrite them as —
k = AX + Bu ; }
T
S
That is j-_;l
-
65 Qii
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—0 1 0O 0 o0~ 0T
0 -1 -3 1 0 0
X = 0 0 -5 1 0 X + 0 U
0O 0 0 -3 .4 1
0o 0 o0 o0 -1 1
Y = |~ 1 0 0 0 o0} X
Figure 9 shows the results.
Feedback matrix K from Feedback matrix K given
ICECAP on page 459 [34]
1.000000 1.00000
1.000000 1.00000
-2.441667 -2.44167
0.705208 0.70528
-0.055208 -0.05528

FIGURE 9 FEEDBACK MATRIX K

The results agree to at least 4 significant figures.
S. Summary

This chapter has discussed the ICECAP integrated part
testing. The procedure for testing each module and the
results of each test have been described. All the results
are satisfactory. Thus, it is confirmed that, the ICECAP

integrated parts are working properly.




CHAPTER 6
F CONCLUSIONS AND RECOMMENDATIONS
5 1. Introduction
This chapter presents the conclusions reached during
this investigation. The chapter also makes recommendations

regarding the continuation of the efforts made in this

thesis as well as other functions that need to Dbe
implemented.
2. Conclusions
The following conclusions were reached : - 4
2.1 MATLAB was integrated into ICECAP. The integration
of MATLAB into ICECAP is one of the most significant results
of this effort. 1Its matrix operations are now part of ICECAP ;;J
capabilities. Some of its routines were used to assist in
computations for other functions. Other features such as I/0 ;ij
file operations can now be used to save, print, and recover ::;;
the elements of matrices. On-line help assistance on matrix
operations was also implemented properly. This on-line help

is more effective than assistance that must be obtained from

Lt ,
o
PSP I PSP U

the manual.

2.2 The eigen number approach was coded and
implemented on ICECAP. Although this approach is slow as ?qu
compared to the Schur approach, it provides reliability and
numerical accuracy as good as the Schur vector approach can

(see Section 4 in Chapter 5). With all these capabilities,

L
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ICECAP is now able to solve the Riccati equation and able to
perform optimal control (regulator) design.

2.3 The routine to compute C(SI - A)-lB function was
developed and implemented. ICECAP is now able to provide the
transfer function for given A, B, C matrices. This function
is very important since it can also be used to compute a
closed-loop transfer function if a closed-loop matrix is
known.

2.4 Polynomial Operations were enhanced. Although this
function is currently available from TOTAL, its capability
is cumbersome. For example, the name of polynomial is
restrictively defined by the program. As opposed to TOTAL,
ICECAP can perform the polynomial operations with much
greater ease. For example, the user can define a polynomial
name and perform multiple polynomial operations such as
plus, minus, and multiplication sequencially without
laborious separate step.

2.5 The routine to perform a state feedback design was
developed and implemented. This routine was coded based on
phase variable representation. As a result, ICECAP is now
able to provide a state feedback matrix gain for a desired
closed-loop transfer function.

3. Recommendations
The following recommendations are made

3.1 Additional modern control functions should be

68
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implemented. Although this thesis effort developed and
implemented only the design by solving Riccati equation and
the design via phase variable representation, other modern
control functions yet to be implemented include
* other state feedback design using canonical variable
representation, observable variables representation,
and generalized control canonical form
* linear regulator, observers (reduced order and full
state  feedback), and tracker wusing entire eigen
structure assignment
* those listed in Section 3.1.2 of Chapter 2

3.2 Develop a routine that generates a generalized
inverse. This routine can be used to compute the solution
to Riccati equation in the case of wuninvertible matrices
[48].

3.3 Develop a routine that solves Riccati equation in
discrete case as well as equivalent discrete models and :;'
sampled data form.

3.4 Modify ICER, the executive routine of ICECAP. As
mentioned in Section 2 of Chapter 4, ICER was not well
implemented. As the development continues, this routine
must be modified.

3.5 Incorporate SOFE [49] & SOFEPL [50] programs. SOFE
is used for generalized digital (Monte Carlo) simulation for
optimal filter evaluation while SOFEPL 1is wused as a
postprocessor for SOFE that computes statistics and generates

plots. The implementation of these two programs

69
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on ICECAP will allow the wuser to perform stochastic
estimation and control design.

3.6 Incorporate LQGLIB [39]. LQGLIB includes various
computer routines that have applications in linear
multivariable system studies. Although the source code for
this program is not available because of copyright and
contractual stipulations, the object code can be used to
implement the program on ICECAP. When this is accomplished,
ICECAP can be used as a linear multivariable systems design
tool.

3.7 Improve computational efficiency of TOTAL's
routines. Complete rework of numerical precision,
numerical stability, and computational efficiency is
required for high dimension.

4. Summary

Several conclusions were reached as a result of this
thesis effort. This chapter has detailed these conclusions.
This chapter also presents several recommendations regarding
the continuation of ICECAP development. Recomnmendations on
what functional capabilities that should be implemented on

ICECAP are included.

T
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APPENDIX A
MATLAB's RAILROAD DIAGRAMS

1. Introduction

A formal description of the language acceptable to
MATLAB was first described in Reference [7]. For the
purpose of convenience, it is presented here again in a form
of railroad diagrams. These railroad diagrams are read by
following the arrow from entry to exit, one can construct a
syntactically correct statement. For example, to define a
name to a variable (matrix or polynomial or number),
according to Figure 15, a name must has first a letter, then
followed by more letters or digits. This process continues
as long as one desires. For additional information see
Reference [51] on page 31.
2. Railroad Diagrams

There are eleven non-terminal symbols in the language :

LINE, STATEMENT, CLAUSE, EXPRESSION,TERM,
FACTOR, NUMBER, INTEGER, NAME, COMMAND, TEXT.

The diagrams define each of the non-terminal symbols wusing

the others and the terminal symbols

Letter -- A through Z,
Digit -- O through 9,
Char - () ;:+-*/\=., <>

Quote -- !

The railroad diagrams are presented as follows

o CLAUSE o FACTOR o NUMBER o TERM
o COMMAND o INTEGER o LINE o TEXT
o EXPRESSION o NAME o STATEMENT
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RAILROAD DIAGRAM

po—e—3 FOR >—» NAME >—>» = >—>» EXPR >=

WHILE
EXPR > —
IF l |
<
|

> EXPR S>—o ]
> ELSE >- i

— END >

.o :
[ O AR

FIGURE 10 RAILROAD DIAGRAM FOR CLAUSE

e e
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s e e
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—3» NAME > >

> CHAR >—
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FIGURE 11 RAILROAD DIAGRAM FOR COMMAND

.
—>» TERM > ->

. vl
‘EZ}' L

FIGURE 12 RAILROAD DIAGRAM FOR EXPRESSION
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RAILROAD DIAGRAM
> NUMBER >
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FIGURE 13 RAILROAD DIAGRAM FOR FACTOR
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FIGURE 14 RAILROAD DIAGRAM FOR INTEGER
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RAILROAD DIAGRAM

l—< LETTER <

—3» LETTER > >

t—<< DIGIT &

FIGURE 15 RAILROAD DIAGRAM FOR NAME

~» INT > > . >—> INT> E INT S>=——r—3>

FIGURE 16 RAILROAD DIAGRAM FOR NUMBER

——3> STATEMENT >—i}

== CLAUSE >————aee—e

=>» EXPR >~ —>
—> COMMAND >———

> > >> EXPR > {>—

-~ é—l

FIGURE 17 RAILROAD DIAGRAM FOR LINE
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RAILROAD DIAGRAM

> NAME >

: .
(>——l: EXPR > > ) >

—— — l—» =>-9» EXPR>—3»
,
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FIGURE 18 RAILROAD DIAGRAM FOR STATEMENT

FACTOR > = e
FIGURE 19 RAILROAD DIAGRAM FOR TERM L
1
> LETTER >— -
> DIGIT >—
- .
-S> CHAR >—— O
> ' > ' >— ]

FIGURE 20 RAILROAD DIAGRAM FOR TEXT
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APPENDIX B
SUBROUTINE DESCRIPTIONS

1. Introduction

This appendix gives a purpose, subroutines called, and

a file name of each FORTRAN non-trivial subroutines used in

MATLAB, MRIC, TRFF,and MODERN. All subroutines used double B

precision, single array for storing the elements of '}
matrices. Certain routines from EISPACK and LINPACK
software are well-documented in the source code; therefore, -

their descriptions are not included in this appendix.

'
)

n
AR Ty 3

2. List of Subroutine Descriptions

CLAUSE FLOP MATFN6 PROMPT TRFF o

CMULT FORMR MATLAB PUTID WPOLY o]
COMAND FORMZ MIXPOL QROOT XCHAR ]
CPOLY FUNS MODERN QSAVE L
CROSS GETCH MPOLY RPOLY T
cUT GETLIN  MRIC SAVLOD ]
DESTOY GETSYM  NEST SORT :
DIAGON GETVAL  NUM STACK1 ]
EQID MATFNI  OPTIMAL STACK2 ]
ERROR MATFN2  PARSE STACKG

EXPR MATFN3  PLOT STACKP _ i:
FACTOR MATFN4  PRINT TERM §

FILES MATFN5 PRNTID TFORM




SUBROUTINE DESCRIPTIONS

L
ti * Subroutine : CLAUSE

E{ Purpose : CLAUSE serves as a recursive routine. It
- handles FOR...NEXT, IF...THEN...ELSE...END,
4 and WHILE features.
il Subroutines Called : GETSYM,ERROR,PUTID,WPOLY,STACKP,

' EXPR,PARSE

File Name : CLAUSE.FOR

L
#; * Subroutine : CMULT 1
. Purpose : CMULT multiplies two complex numbers.
3 Subroutines Called : None

File Name : QCMULT.FOR .

Subroutine : COMAND

Purpose : Sets up the MATLAB's command table. It also
verifies whether the command is valid or not. -
If the command is valid, COMAND will process ]
that conmmand. ;
Subroutines Called : ERROR,GETSYM,STACKP,FILES,PRNTID,
FUNS T
File Name : COMAND.FOR
Subroutine : CPOLY :E
Purpose : Forms a polynomial of order n with n complex -
eigenvalues. T
Subroutines Called : CMULT, WPOLY
File Name : QCPOLY.FOR ]
-
9

ez e

------------------------------------------
.........
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SUBROUTINE DESCRIPTIONS

Subroutine : CROSS
Purpose : Adds the elements of matrix i.e.

1 _2
456

- 1 6 15 14 9

This subroutine is used in polynomial N
multiplication algorithm in Section 3.3 of L
Chapter 4 .
Subroutines Called : None o

File Name : QCROSS.FOR

Subroutine : CUT FE
Purpose : Partition a 2nx2n matrix as

U M
nxn nxn

v N T
_ nxn nxn_ o

Subroutines Called : STACKG .
File Name : QCUT.FOR "“f

Subroutine : DESTOY

Purpose : Erases the variables in the storage.
Subroutines Called : STACKG,STACKP

File Name : DESTROY.FOR

Subroutine : DIAGON

Purpose : Forms a diagonal matrix (nxn) with a given
vector (nxl).

Subroutines Called : None

File Name : QDIAGON.FOR
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SUBROUTINE DESCRIPTIONS

* Logical Function : EQID

Purpose : EQID is wused to check whether two given
strings are the same or not.

Subroutines Called : None

[: File Name : LIB.FOR

- * Subroutine : ERROR
‘; Purpose : Prints error messages.

Subroutines Called : None

[ File Name : ERROR.FOR

* Subroutine : EXPR

Purpose : EXPR processes MATLAB's expression according
to the railroad diagram for EXPR in Appendix A

Subroutines Called : PUTID,GETSYM,ERROR,TERM,STACK1,
STACK2

File Name : EXPR.FOR

* Subroutine : FACTOR

Purpose : FACTOR processes MATLAB's factor according to
the railroad diagram for FACTOR in Appendix A.

Subroutines Called : ERROR,GETSYM,GETCH,EXPR,STACK1,
PUTID,FUNS,STACKG,MATFN's,STACK2

File Name : FACTOR.FOR

Subroutine : FILES

o

Purpose : FILES ia a system dependent routine to
allocate files.

Subroutine Called : None

File Name : FILES.FOR
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SUBROUTINE DESCRIPTIONS

*

Double Precision Function : FLOP

Purpose : FLOP is a system dependent double precision
function. It counts and possibly chops each
floating point operation.

Subroutine Called : None

File Name : FLOP.FOR

o

Subroutine : FORMR

Purpose : Forms the matrix & based on A,Q,and D.
-1 T
{ where D = BR B

: -A D
4 S _
@ T
| _-Q A _
! Subroutines Called : STACK1
2
s
E \e File Name : FORMR.FOR
g
Fi * Subroutine : FORMZ
fj Purpose : FORMZ is a machine dependent routine which
th prints outputs with a Z format
(see VAX/FORTRAN manual for Z format).
Subroutiaes Called : None
File Name : FORMZ.FOR

lo
¢ * Subroutine : FUNS
F .
f} Purpose : FUNS sets up the MATLAB's functional table.

It zlso verifies whether the function is
le valid or not. If the function is wvalid,
i FUNS set the two control variables namely,
= FIN and FUN which will be used to signal
- MATLAB subroutine to call functional

routines, MATFN1 thru MATFNG6.
%. ) Subroutine Called : PRNTID

File Name : FUNS.FOR
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SUBROUTINE DESCRIPTIONS

Subroutine : GETCH -
' .
Purpose : GETCH gets next character from the buffer. ]
Subroutines Called : None fiﬁ
il
File Name : GETCH.FOR e
* * Subroutine : GETLIN B
% Purpose : GETLIN reads in the input and puts it in ‘the o
buffer 80 characters at a time. ke
\ ]
Subroutines Called : XCHAR,GETCH,PUTID,FILES,EDIT gﬁf
- File Name : GETLIN.FOR L
e
g
* Subroutine : GETSYM ifﬁ
Purpose : GETSYM primarily verifies each character in -f;ﬁ
N the buffer which contains 80 characters. e
N\’ This buffer was read previously in by ——
’ subroutine GETLIN. e
Subroutines Called : GETCH,GETVAL,PRNTID £
File Name : GETSYM.FOR s
P
) " _'-“‘.-
* Subroutine : GETVAL RO
Purpose : GETVAL forms a numerical value of each Z; B
character in the buffer. e
Subroutines Called : GETCH B
File Name : GETVAL.FOR SR
* Subroutine : MATFN1 L;:
Purpose : MATFN1 evaluates functions involved in i
Gaussian elimination. »
Subroutines Called : ERROR,WGECO,WGESL,RSET,WCOPY,WGEDI, L
WGEFA ,WSWAP ,HILBER ,WSCAL :

File Name : MATFN1.FOR




SUBROUTINE DESCRIPTIONS

Subroutine : MATFN2 fe d
Purpose : MATFN2 evaluates elementary functions and o
functions involved in eigenvalues and giﬂ
eigenvectors. T

]

Subroutines Called : ERROR,WCOPY,WSET,HTRIDI,IMTQL2, .
HTRINK,CORTH,COMQR3,WLOQ,WMUL ,WATAN, ey

WSQRT ,WSCAL ,WAXPY,WDIV
File Name : MATFN2.FOR

P DR
ot ta e
N S

it
LU R
, e e e

Ll
4
.

Subroutine : MATFN3 -

&,
.

g, Wb, e
e PR
R PLANAINUEN
A P
s N RN

Purpose : MATFN3 evaluates functions involved in singular
value decomposition.

Subroutines Called : ERROR,WSVDC,WCOPY,WRSCAL

- -
]
A e Bt

4
P |

File Name : MATFN3.FOR

A

Subroutine : MATFN4

, ......-

+ ..'.'n'.‘-'-'-'-‘

.::l 1,"_. ‘e SRR
Aal )

Purpose : MATFN4 evaluates functions involved in QR
decomposition in least squares sense.

]
»
A A aeA KB

Subroutine Called : ERROR,STACK1,WCOPY,WSET,WQRDC,WQRSL,
WSWAP

File Name : MATFN4.FOR

Subroutine : MATFNS
Purpose : MATFN5 performs file handling and other I/0

LA R T S S B R} [k T I €
.- 'x.l *ot LI AT )
-, PAEAERLRER R R N
S AR AL [AENRREN , f, 0

. e PRI LS e N »

operations. -
Subroutines Called : ERROR,FILES,PRINT,PUTID,SAVLOD, 325
STACKP,RSET,RAT, BASE,WCOPY,STACK1, Tl

PLOT ;:;

File Name : MATFNS.FOR S

-. SRR ‘-/-_;.. om ..a.-; J'--. ..-_-- B '.
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SUBROUTINE DESCRIPTIONS
Subroutine : MATFNG6

Purpose : MATFN6 evaluates utility functions such as
MAGIC ,KRONECKER PRODUCT,SIZE,EYE,RAND, etc.

Subroutines Called : ERROR,WCOPY,WMUL,WDIV,USER,RSET,
MAGIC,WSET

File Name : MATFN6.FOR

Subroutine : MATLAB

Purpose : MATLAB is used to initialize all necessary
control variables and flags.

Subroutines Called : FILES,WSET,PUTID,PARSE,MATFN1 thru
: MATFNG6.

File Name : MATLAB.FOR

Subroutine : MIXPOL

Purpose : Forms a polynomial of order n with given real
and complex eigenvalues.

Subroutines Called : WPOLY,CPOLY,RPOLY,QROOT
File Name : MIXPOL.FOR

Subroutine : MODERN

Purpose : Performs a state variable feedback design
using phase variable representation using
the algorithm presented in Section 3.4 of
Chapter 4.

Subroutines Called : TFORM,STACKG,QSAVE,NUM

File Name : MODERN.FOR

Subroutine : MPOLY

Purpose : Performs polynomial multiplication using the
algorithm presented in Section 3.3 of Chapter 4.

Subroutines Called : WPOLY
File Name : MPOLY.FOR
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SUBROUTINE DESCRIPTIONS

.
E

R S
E * Subroutine : MRIC o

ot Purpose : MRIC solves the continuous time algebraic
X matrix Riccati equation

T -1 T AR
AP+PA-PBR BP+Q =0 =

L s W AN
1" .~ ‘I""

using the eigen number approach.
Subroutine Called : FORMR,SORT,RPOLY,CPOLY,MIXPOL,NEST,

CUT,ANSWER1 ,ANSWER2 ,QSAVE,DESTOY, Fo
MATFN2 :

File Name : RICCATI.FOR

LA A} ? e e ok w

o . NENL AN
Tttt R
S - B Lt S

* Subroutine : NEST "
Purpose : Multiplies a matrix polynomial using a nest &
multiply algorithm [47]. P
\z Subroutines Called : STACK2,STACKG '
File Name : QNEST.FOR o
* Subroutine : NUM s
Purpose : Computes coefficients of a numerator of a
transfer function using the algorithm N
presented in Section 3.2 of Chapter 4. -
Subroutine Called : MATMUL,MATVEC,VECPRO N
File Name : NUM.FOR
% Subroutine : OPTIMAL
Purpose : Computes a feedback matrix gain K using a
positive definite solution to Riccati equation —
and a closed loop matrix. :;¥
Subroutines Called : STACK2,STACKP,STACKG T

File Name : OPTIMAL.FOR re
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SUBROUTINE DESCRIPTIONS

* Subroutine : PARSE
Purpose : PARSE controls the interpretation of each
statement. It calls subroutines that process
the various syntactic quantities such as
command, expression, term, and factor.
Subroutines Called : FILES,PROMPT,GETLIN,PUTID,GETSYM,
COMAND , FUNS ,ERROR , STACKP,CLAUSE,
EXPR, TERM,FACTOR
File Name : PARSE.FOR
* Subroutine : PLOT

Purpose : PLOT is used to plot X versus Y on specified
unit number.

Subroutines Called : None

File Name : PLOT.FOR

* Subroutine : PRINT
Purpose : PRINT serves as a primary output routine.
Subroutines Called : FILES,PRNTID
File Name : PRINT.FOR

* Subroutine : PRNTID
Purpose : PRNTID prints the variable names.
Subroutines Called : None

File Name : PRNTID.FOR

* Subroutine : PROMPT

] Purpose : PROMPT is used to issue MATLAB prompt with
. optional pause.

Subroutines Called : None

File Name : PROMPT.FOR R
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SUBROUTINE DESCRIPTIONS

Subroutine : PUTID

Purpose : PUTID is used to store the variable name onto
the storage.

Subroutines Called : None

File Name : LIB.FOR

Subroutine : QROOT

Purpose : QROOT selects n positive real parts of
eigenvalues.

Subroutines Called : None

File Name : QROOT.FOR

Subroutine : QSAVE

Purpose : Saves an output with a given name.
Subroutines Called : GETLIN,GETSYM,STACKP
File Name : QSAVE.FOR

Subroutine : RPOLY

Purpose : RPOLY forms a polynomial of order n with n
real eigenvalues.

Subroutines Called : DIAGON,MATFN2
File Name : QRPOLY.FOR

Subroutine : SAVLOD

Purpose : SAVLOD is used for save and load data to and
from the user disk.

Subroutines Called : None

File Name : SAVLOD.FOR
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SUBROUTINE DESCRIPTIONS

* Subroutine : SORT
Purpose : SORT rearranges the eigenvalues. It puts the
largest eigenvalue in the top of the stack
and the smallest in the bottom.
Subroutines Called : None

File Name : SORT.FOR

* Subroutine : STACK1
Purpose : STACKl performs unary operations and a
transpose of a matrix since these operations
are very simple. For a serious matrix
computation, the LINPACK & EISPACK is used.
Subroutines Called : WRSCAL, ERROR,WCOPY

File Name : STACK1l.FOR

* Subroutine : STACK2

Purpose : STACK2 performs binary and ternary operations
such as addition, subtraction, multiplication,
etc.

Subroutines Called : ERROR,WAXPY,WCOPY,WSCAL,WDIV,WMUL
File Name : STACK2.FOR

* Subroutine : STACKG

Purpose : STACKG is used to load data from the bottom
of the stack to the top of the stack. This
data will then be used in the actual
computations.

Subroutines Called : PUTID,ERROR,WCOPY _
File Name : STACKG.FOR .
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SUBROUTINE DESCRIPTIONS
i * Subroutine : STACKP
Purpose : STACKP is used to put variables into stacks.
; Subroutes Called : ERROR,FUNS,PUTID,WCOPY,WSET,PRINT
! File Name : STACKP.FOR
* Subroutine : TERM
i Purpose : TERM processes MATLAB's term according to the

railroad diagram for TERM in Appendix A.
Subroutines Called : FACTOR,GETSYM,STACK2,ERROR,MATFN's
File Name : TERM.FOR

* Subroutine : TFORM

Purpose : Computes a transformation matrix which
transforms a state equation from a physical

i \e variable form to a phase variable form.
- Subroutines Called : STACKG,STACK2
: File Name : TRANSFORM.FOR

Subroutine : TRFF

-1
Purpose : Performs a C(SI - A) B function.

5 Subroutines Called : STACKG,ERROR,MATFN2,NUM,VCOPY,

> MCOPY , COPYIER

; File Name : TRANSFER.FOR ]
i * Subroutine : WPOLY f%i
% Purpose : WPOLY multiplies a column vector of order (nxl) G
- and a row vector (lxn) together. Y
i Subroutines Called : CROSS Zjﬁ
5 File Name : WPOLY.FOR a
: =
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SUBROUTINE DESCRIPTIONS

% Subroutine : XCHAR

Ty TE Y W CHEC RN A R}
SIS ST

Purpose : XCHAR is a system dependent routine to handle
special characters.

. Subroutines Called : None
File Name : XCHAR.FOR

N
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APPENDIX C
ICECAP USER's MANUAL
1. Introduction
This appendix first presents the overview of ICECAP.

Second, it provides all ICECAP features. Finally, it

includes examples of the use of ICECAP to solve modern

control problems. They were selected from example problems

or problems contained in the Reference [34].

2. Overview of ICECAP

ICECAP (Interactive Control Engineer Computer Analysis

Package) [4,5] 1is a computer-aided design program that

provides the control systems engineer with a ‘'designer's
e workbench''. Based on its current version, ICECAP can be

used as a design tool such as conventional control design

(discrete & continuous), modern and optimal control design.

It is designed to be a system that is easy to use and learn;

that is, it accepts single line command words from the user,
E processes them immediately, and displays the results.
: ICECAP is based on the program 'TOTAL" [2] and '"MATLAB" [7].
TOTAL is an interactive software package for digital and
continuous control system analysis and synthesis (developed
at The Air Force Institute of Technology). MATLAB was
originally developed by C. Moler at the University of New

Mexico. It was written as a convenient tool for

computations involving matrices. MATLAB provides access to

the LINPACK [35] and EISPACK [36] software; these two i;;
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ICECAP USER's MANUAL

packages represent the state of the art in matrix

computational methods. EISPACK contains routines for matrix

eigenvalue computations while LINPACK provides subroutines

for solving and analyzing simultaneous 1linear equations.

The MATLAB program has been enhanced with control design

H functions to form a complete interactive computer-aided

F control system design package.

g General numerical analysis primitives perform the
solution of simultaneous linear equations, matrix inversion,

E eigensystem analysis, singular value decomposition, and

?; other matrix decompositions. Other specialized primitives

are provided for conventional and modern control design.
These include root locus design, state feedback design, and
optimal control design (via the algebraic Riccati equation).
Both continuous and discrete systems are supported.

ICECAP is much more than just a control design program.

It provides on-line help assistance and quick answers to
common problems, making it enjoyable to use.
3. MATRIX ANALYSIS - -9
At the heart of ICECAP is the ability to manipulate {';L_;
matrices. It has commands and syntax that allow easy and
powerful manipulation of matrices. Five stacks are used to "]
store all variables and data. Matrices are contained in the
local MATLAB 'workspace'. To see what objects are in the

workspace, the command DIR is used.
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Matrices can be introduced into ICECAP in several
different ways. The easiest for small matrices is to use an
explicit list. The explicit list is surrounded by <" and
C>', and uses the semicolon ';' to indicate the ends of the
rows. For example, the input line

A=<123;456;78D

results in the output

A =
1. 2. 3. .
4. 5. 6. -
7. 8. 9. :
which 1is be saved for later use. The individual elements
‘;“ are separated by commas or blanks and can be any MATLAB
K o

expressions. For example,
X = <&9.4, 1/3, 4*atan(1)>

results in

X =
- -9.4000 0.3333  3.1416 L
EE The command such as LONG R, X' provides results in ;%
g -9.400000000000000 ‘

3 0.333333333333333
= 3.141592653589793

and the command SHORT restores the original format.
Large matrices can be spread across several input
lines, with the RETURN replacing the semicolons. The

above matrix could also have been produced by

97
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123
456 4
789

Matrices are overwritten, if they are assigned new

values. For example,
A = Q230

results in

A =
1 2,
3. 4.

which replaces the previous A matrix.

All computations are done using double precision real . f
arithemetic. The user, however, has a choice to see the \ZR
results in REAL, E, D, or Z format. ICECAP has a rich ;_i
instruction set for general matrix analysis. Most of these :ﬁﬁ
matrix primitives originated with MATLAB. E%ﬁ
3.1 MATRIX ARITHMETIC E;i

ICECAP provides a set of operations that perform basic ?fﬂ
matrix arithmetic : o

/ -~ matrix right division computed by Gaussian elimination

\ - matrix left division computed by Gaussian elimination B

' -~ matrix transpose, quote to delimit character strings

+ - matrix addition 7:1

- - matrix subtraction ;i?

* - matrix or polynomial multiplication %ﬁ;

**% « raises matrices or polynomials to powers ;f%
—
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For example, suppose for a vector X and a matrix A,
._ (Note that " [D:" is the system prompt) ‘_
[>: X = <&1.34/5 pi); L
! D :A =<123;456;781); H‘
C a vector B is computed as A*X,
[>: B = a%x
which results in Hﬂ
B = é;i
9.7248 .
17.6496 i
28.7159 i
then the statement
_ [>:Y = AB ’
@ ==
solves the linear equations and results in —
Y = 3
~1.3000 B
0.8000 o
3.1416 —
The 1inverse of a matrix may also be formed directly
using the function INV. If A had been non-square, then the
under- or over- determined equation would have been solved ;f
‘ in a least squares sense. ‘
%b 3.2 ELEMENT-BY-ELEMENT OPERATIONS
ICECAP has a set of elementary functions that operate -"
on matrices. The following functions perform element-by- :
element operations. Given that A ia a matrix and x is a :
. T number, "'*
P 99 =
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ABS (x)

absolute value or magnitude
CONJ(x) - complex conjugate

IMAG(x) - imaginary part

PROD(A) - product of all elements
REAL(A) - real part

ROUND(A) =~ round to nearest integer
SIZE(A) - row and column dimensions of a matrix
SUM(A) - sum of all elements of a matrix
3.3 BASIC PROPERTIES s

Some basic properties of a matrix may be calculated

with the following functions : (given that A is a matrix)

COND(A) - condition number in 2-norm —
DET (A) - determinant t%
INV(A) - inverse 'é
HILB(A) - inverse HILBERT matrices e

KRON(A) - Kronecker tensor product of two given
matrices

NORM(A) - singular values, l-norm, infinity norm, and
F-norm; i.e., SQRT(SUM(DIAG(A'*A)))

PINV(A) - pseudoinverse with optional tolerance

RANK (A) - rank of a matrix

RAT(A) - remove roundoff error

RCOND(A) - estimate of the condition of a matrix
TRIL(A) - lower triangular part of a matrix
TRIU(A) - upper triangular part of a matrix

100
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3.4 TRANCENDENTAL MATRIX FUNCTIONS . :j

A set functions calculate the trancendental matrices %EE

that are defined for square matrices. (given that A is a %ﬁ

matrix.) TT

ATAN(A) - arctangent a&

COS (A) - cosine .;g

EXP(A) - matrix exponential ;i

LOG(A) - natural logarithm Ei

SIN(A) - sine

p—

SQRT(A) - square root n

These functions are calculated using eigenvalues and ;ﬁ

eigenvectors. When A is a vector, however, these functions ;i

are calculated on an element by element basis. If A is :;

neither a vector, nor square, these functions give an error gi

message. Ea

-~

3.5 DECOMPOSITIONS AND FACTORIZATIONS t?

Some matrix decompositions and factorizations may be L
calculated with the following commands : (given that A is a

matrix) -

CHOL (A) - Cholesky factorrization ;g

EIG(A) - eigenvalues and eigenvectors E;

HESS (A) - Hessenberg form :;

LU(A) - factors from Gaussian elimination ;ﬁ

ORTH(A) - orthogonalization ii

QR (A) - orthogonal-triangular decomposition jj
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SHUR(A) - Schur decomposition

RREF(A) - reduced row echelon form of a rectangular
matrix

sSvD(A) - singular value decomposition

3.6 OTHER FUNCTIONS
ICECAP also provides some useful functions that help
the user to generate often used matrices.
EYE - identity matrix
ONES - matrix of all ones
MAGIC - interesting test matrices. MAGIC(N) is an N
by N matrix constructed from the integers 1
through N**2 with equal row and column sums.

3.7 POLYNOMIAL OPERATIONS
ICECAP provides several primitives for polynomial

manipulations
* & *%* - pultiplication and raise powers of
polynomial
POLY - characteristic polynomial
ROOT - polynomial root

Polynomials are represented in ICECAP as row vectos
containing the coefficients ordered by descending powers.

For example, the characteristic equation of the matrix

A =
1. 2. 3.
4, 5. 6.
9. 10. 11.

is found by using POLY and typing
[(> : P = POLY(A)

102
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P =
1.0000
-17.0000
-24.0000
0.0000
The roots of this equation (eigenvalues of matrix A) are
found using ROOT.
D : R = ROOT(P)
R =
18.3107
-1.3107
0.0000
These may be reassembled into a polynomial using POLY.
[> : PP = POLY(R)
PP =
1.0000
-17.0000

-24.0000
0.0000

Polynomial multiplication may be accomplished using
"% If A and B are polynomials, then Y = A*B calculates
the polynomial product. For example, typing

>:a=421);

> : 8 =412,

[> : Y = A*B

which yields the polynomial product

Y =
1. 4, 5. 2.

Raising the power of polynomial can be done easily by ;;4
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typing

D:aA=411;

[> : X = A**3
yields the polynomial product

X =

1. 3. 3. 1.

3.8 1/0 FILES HANDLING

ICECAP provides a very useful file handling for saving
and loading data.

DISP(T) - print the text stored in T

stores all the current variables in a
file

SAVE('files')

LOAD('files') retrieves all the variables from a file

PRINT('FILE',X)

print X on a file

DIARY('file') makes a copy of the complete ICECAP

session

4. CONTROL DESIGN AND ANALYSIS

ICECAP provides a powerful environment for the analysis
and design of control systems. Many analysis and design
tasks are easily performed using a single application of a
primitive function. A rich instruction set of primitive
functions is available. Other design and analysis tasks can
be solved by a short series of commands. The commands are
interactively typed in by the user.

ICECAP 1is primarily concerned with linear systems that

can be represented either in state-space form or in
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i polynomial notation as a Laplace transfer function for
continuous time, or as a Z-transform transfer function for
discrete time.
. 4.1 MODERN CONTROL
A system of LTI differential equations can always be
E; expressed as a set of first-order matrix differential
F equations :
‘ x = Ax + Bu
. y =Cx + Du
where u is the control input vector, x is a vector of state
variables, and y is the output vector.

An equivalent representation for a single input-single

o output system is the Laplace transform representation :
Y(S) -1
—— = C (SI - A) B+D
u(s)

A system can be converted from state-space to Laplace

transfer function by typing DISPLY TRANSFER/F and from

there on the user can use ICECAP commands 1like DISPLAY,

SPECS, LOCUS, EQUATION, etc. as desired. -
ICECAP also provides other modern control design

techniques, such as state feedback design, and optimal

control design via the algebraic Riccati equation. Using a -

comnand like DISPLAY MODERN or DISPLAY RICCATI, the user can R

obtain the feedback matrix, and the solution to Riccati

equation and feedback matrix associated with that positive T
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i definite solution, respectively. Especially in the RICCATI %%?
solver, 1if the solution is positive definite, ICECAP also %jg
provides a closed loop matrix automatically. From this Eii
i point on, the user can use the closed loop matrix to obtain %;%
| a closed loop transfer function by typing DISPLAY TRANSFER/F. E;ﬂ
_ 4.2 CLASSICAL DESIGN (Continuous and Discrete System)
= Since ICECAP builds wupon the powerful routines of
TOTAL, it retains the TOTAL's power as a classical design
tool. Here are some useful ICECAP commands which can be
i used to perform control system design and analysis.
- HELP On line help is provided. Eype HELP followed
Veoo
- ‘- -- CHANGE (modifies the numerator or
i e denominator constant, TSAMP
- and planes of analysis)
ix -- COPY (copies source to destination)
. -- DEFINE (%nputs Matrices and Transfer
unction)
ﬁ; -- DELETE (Removes a pole or zero of a 'f
:; transfer function) .5j
;2 -- DISPLAY (executes various functions) -i
-- FORM (forms OLTF CLTF using GTF&HTF) "j
- INITIAL (explains abbreviations of j
. commands) R
? -- INSERT (adds a pole or zero to a ) j
. transfer function) s
Eﬁ -- MATRIX (explains matrix functions) -
;; -- PRINT (prints data to answer file) RS
106
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-- SYSTEM

TEACH

-- TFORM
-- TURN

EQUATION
GAIN

- LISTING/F

LISTING/T

LOCUS AUTOSCALE
LOCUS MAGNIFY
LOCUS SHRINK
LOCUS ZOOM

LOCUS /BRANCH
LOCUS/GAIN
LOCUS/ZETA
PFE

SCAN/MAG
SCAN/PHASE
SPECS

- TURN

ANSWER (ON/OFF)

oo
..'=

Lo
.

RN

(explains genearl information
about ICECAP)

(example of continuous time
problems)

(for discrete transformation)
(turn switches on or off)

file(s). Type PRINT followed
by...

(invert Laplace transform)
(forward loop gain)

(listing of frequency responses)
(listing of time responses)
(root locus with autoscale)
(magnifies root locus)

(reduces root locus)

(magnifies root locus at a
particular point)

(branch for each locus)
(locus with various gains)
(locus with wvarious zetas)
(partial fraction expansion) -
(scanning magnitude)
(scanning phase) Efﬁ

(figure of merit) ~ 1

(write data to file ANSWER) -
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AR~ AP
P
t"‘
|}
]

DECIBELS (ON/OFF) (decibels mode)

E -=- GRID (ON/OFF) (grid on or off)
? -- HERTZ (ON/OFF) (Hertz mode)
. -- MAINMENU (ON/OFF) (mainmenu level)
- UPDATE save data to file MEMORY
- COPY source to destination (i.e. GTF to HTF etc.)
; - DEFINE ©primary used for input data; various options
are...

-- MATRIX (enables matrix command)

: - == GAIN (nodifies forward loop gain)
s -- CLTF POLY (input CLTF in poly form)
R -- OLTF FACT (input OLTF in factored form)
s &: - DISPLAY primary output at user terminal, various
! ' options are...

-- EQUATION (time response of CLTF)
ﬁ -- GAIN (forward loop gain)
Lj -- LISTING/F (listing of frequency x
- responses) =
~ -- LISTING/T (listing of time responses) ;}i
;j -- LOCUS AUTOSCALE (root locus with autoscale) —
13 -- LOCUS MAGNIFY (magnifies root locus) N
. -- LOCUS SHRINK (reduces root locus) |
o
? -- LOCUS ZOOM (magnifies root locus at a -
. particular point) o
ii -- LOCUS/BRANCH (branch for each locus) o
;: -- LOCUS/GAIN (locus with various gain)
i .. ’-'1

-- LOCUS/ZETA (locus with various zeta) f}
'.:'_:H
.'~ 108 '1
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H -- MATRIX (same as DEFINE MATRIX)
. -- MODERN (performs state variable
- feedback design)
i -- OLTF, CLTF, HTF or GTF

-- PFE (partial fraction expansion)

-- RESPONSE/F (plots frequency response
| of transfer function)
; -- RESPONSE/T (plots time response of a
o transfer function)

-~ RICCATI (solve the continuous time ARE)
i - -- SCAN/MAG (scanning magnitude)
- -- SCAN/PHASE (scanning phase)
;ﬁ -- SPECS (figures of merit)
i o -- SWITCHES (shows switch settit-l%s)
ig -- TRANSFER/F (performs C(SI - A) B function)
E - FORM primary used for block diagram manipulation
E -- CLTF using GTF and HTF
2 -- CLTF using OLTF
Ei 5. Command Language Definition
?: This section presents the ICECAP command language
Ef definitions in flow chart form. These definitions
E% unanbiguously define the ICECAP command language.
E Definitions are provided in alphabetical order. The
Ez standards used to develop the command language diagrams are
E- also provided. Finally, an exhausted listing of every legal E

ol

T ICECAP command is presented along with the allowable
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3
abbreviation in each case. SR
5.1 List of Command Language Definitions }f
A list of the described command language definitions faa
appears below: .
o CHANGE o DISPLAY o PRINT
o COPY o FORM o TURN
{ o DEFINE o HELP o TFORM N
; o DELETE o INSERT S
» :
.. 5.2 Command Language Definition Standards
8 * All diagrams are to be read from left to right. 3
? * Bracketed terms indicate choices. Only one o
N choice per bracket is allowed. R
3 * A lower case command word indicates that the Sy
- feature has not yet been implemented in the language. ]
o -
* The full spelling of each command word is used in =
each case. It is understood that the L
abbreviations described 1in section 5.3 are also -
valid.
* Also, the carriage return and the dollar sign are
valid choices at any point in the diagram. The 3
carriage return causes the system to prompt the R
user regarding the choices for the next allowable _fi
word. A dollar sign aborts the present commmand T
string. -“1
* In addition at least one blank must separate the = Y
words in the command string. ]
* The blanks in some of the brackets are there only S
to give the diagram balance. =
1
* Words that need no object in order to be complete n
commands are not shown. To date, this includes e
the commands STOP, UPDATE, and RECOVER. S
=
- 3
o
110 .
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The following figures describe the sequence of SR

command words that form an ICECAP command. ;yq

a2

CLDK -
i: CLNK T
GDK o
GNK

HDK

CHANGE

F - - OLDK "
R OLNK e

%
w bl

[T N A

1
I

FIGURE 21. COMMAND LANGUAGE DEFINITION FOR CHANGE

- -«
CLTF CLTF o
- - GTF GTF
COPY
HTF HTF
- - OLTF OLTF

Figure 22, COMMAND LANGUAGE DEFINITION FOR COPY ;f
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- - GAIN
DEFINE
, _ _ MATRIX
{ CLTF - -
i - - GTF l FACT
DEFINE
HTF POLY
- - OLTF _ _

FIGURE 23. COMMAND LANGUAGE DEFINITION FOR DEFINE

_ _ CLTF - -
GTF ZERO
DELETE

_ _ HTF POLE
OLTF _ _ o
FIGURE 24. COMMAND LANGUAGE DEFINITION FOR DELETE "
112 ]
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o CLTF e
- EQUATION N
: GAIN K
GTF A
HTF L
LISTING/F .
LISTING/T

LOCUS/BRANCH
LOCUS/GAIN

LOCUS/ZETA 3
MATRIX -

DISPLAY '

- - MODERN
OLTF
PFE '
RESPONSE/F ~ g
RESPONSE/T S
RICCATI W
SCAN/MAG S
SCAN/PHASE S
SPECS —
SWITCHES sy
TRANSFER/F N

- - e
8 3 B _ AUTOSCALE mTT
MAGNIFY
DISPLAY LOCUS
SHRINK
. - - - ZOOM
_ _ _ _ CLTF .
OLTF -
l DISPLAY ROOT o
| _ POLY GTF
_ _ HTF

FIGURE 25. COMMAND LANGUAGE DEFINITION FOR DISPLAY
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OLTF

FORM ' CLTF USING GTF AND HTF

CLTF USING OLTF

FIGURE 26. COMMAND LANGUAGE DEFINITION FOR FORM

CHANGE
COPY
DEFINE
DELETE
DISPLAY
FORM
INITIAL
INSERT
MATRIX
PRINT
SYSTEM
TEACH
TFORM
TURN

FIGURE 27. COMMAND LANGUAGE DEFINITION FOR HELP

_ _ CLTF B B
GTF ZERO
INSERT
_ _ HTF POLE
OLTF _ _

FIGURE 28. COMMAND LANGUAGE DEFINITION FOR INSERT
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CLTF S
EQUATION .
GAIN

GTF

HTF
LISTING/F o
LISTING/T .

- - LOCUS/BRANCH
PRINT LOCUS/GAIN
_ _ LOCUS/ZETA
OLTF
PFE -l
RESPONSE/F -
RESPONSE/T .o
SCAN/MAG L
SCAN/PHASE R
SPECS o
_ _ _ _ AUTOSCALE
MAGNIFY
PRINT LOCUS I
_ _ _ _ SHRINK e
ZOOM T

CLTF
OLTF A

POLY GTF
HTF

‘.
FIGURE 29. COMMAND LANGUAGE DEFINITION FOR PRINT
115
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SWP
_ _ CLTF SZ BAKDIF
GTF WPS BILINEAR
TFORM WPZ IMPULSE
_ _ HTF WS TUSTIN
OLTF Wz MULTIPLE
ZW
- z, -~ -

FIGURE 30. COMMAND LANGUAGE DEFINITION FOR TFORM

(T

ANSWER
CANCEL
CLOSED

TURN

DECIBELS ON

GRID OFF
HERTZ
MAINMENU

FIGURE 31. COMMAND LANGUAGE DEFINITION FOR TURN
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ECAP Command
The

following 1list

contains

every valid ICECAP

command defined as of the conclusion of this

CHANGE

CHANGE
CHANGE

COPY CL
COPY GT

\e DEFINE
DEFINE

DEFINE
DEFINE
DEFINE

DEFINE

DELETE
DELETE

DISPLAY
DISPLAY
DISPLAY
DISPLAY

DISPLAY
DISPLAY

DISPLAY
b DISPLAY

SHE DISPLAY

COMMAND

CLNK
PLANE
TSAMP

COPY (source) (destinstion)

TF OLTF
F HTF

GAIN
INPUT

(function) (fact/poly)

CLTF POLY
OLTF FACT

MATRIX

(function) (POLE or ZERO)

HTF ZERO

DISPLAY (function)
DISPLAY OLTF
DISPLAY EQUATION

GAIN

LISTING/F
LISTING/T

LOCUS AUTOSCALE

DISPLAY LOCUS MAGNIFY

LOCUS SHRINK
LOCUS ZOOM

DISPLAY LOCUS/BRANCH

LOCUS/GAIN
LOCUS/ZETA

DISPLAY MATRIX

MODERN

.............

investigation.

The accepted abbrevaition is listed along side the command.

ABBREVIATION

CHANGE (numerator or denominator gain)

CHA
CHA
CHA

Cop
CoP

DEF
DEF

DEF
DEF

DEF

DEL

DIS
DIS
DIA
DIS
DIS
DIS
DIS
DIS
DIS
DIS
DIS
DIS
DIS
DIS

CLN
PLA
TSA

CLT
GTF

GAl
INP

CLT
OLT

MAT

HTF

OLT
EQU
GAL
L/F
L/T
LocC
LoC
LoC
LOC
L/B

L/z
MAT
MOD

OLT
HTF

POL
FAC

ZER

e
o e

]
t
-
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COMMAND ABBREVIATION _
DISPLAY PFE DIS PFE .
DISPLAY POLY (function) ;
DISPLAY POLY GTF DIS POLY GTF g
- DISPLAY RESPONSE/F DIS R/F
- DISPLAY RESPONSE/T DIS R/T
8 DISPLAY ROOT (function)
i DISPLAY ROOT CLTF DIS ROO CLT .
[ DISPLAY SCAN/MAG DIS S/M
% DISPLAY SCAN/PHASE DIS S/P :
DISPLAY SPECS DIS SPE g
DISPLAY SWITCHES DIS SWI N
DISPLAY TRANSFER/F DIS T/F .
FORM OLTF FOR OLT ;
FORM CLTF USING GTF AND HTF FOR CLT USI GTF AND HTF
FORM CLTF USING OLTF FOR CLT USI OLT
HELP CHANGE HEL CHA
HELP COPY HEL COP -
HELP DEFINE HEL DEF <]
HELP DELETE HEL DEL 3
HELP DISPLAY HEL DIS -]
HELP FORM HEL FOR -
HELP INITIAL HEL INI
HELP INSERT HEL INS
HELP MATRIX HEL MAT S
HELP PRINT HEL PRI e
HELP SYSTEM HEL SYSTEM DR
HELP TEACH HEL TEA S
HELP TFORM HEL TZ7O .
HELP TURN HEL TUR -
INSERT (function) (POLE or ZERO) R
INSERT HTF ZERO INS HTF ZER 3
PRINT EQUATION PRI EQU -
PRINT GAIN PRI GAI ~
PRINT LISTING/F PRI L/F e
PRINT LISTING/T PRI L/T ]
PRINT LOCUS AUTOSCALE PRI LOC AUT R
PRINT LOCUS MAGNIFY PRI LOC MAG oo
PRINT LOCUS SHRINK PRI LOC SHR -
PRINT LOCUS ZOOM PRI LOC ZOO S
PRINT LOCUS/BRANCH PRI L/B "]
SR
118 v
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COMMAND ABBREVIATION
PRINT LOCUS/GAIN PRI L/G
PRINT LOCUS/ZETA PRI L/Z
PRINT PFE PRI PFE
DISPLAY POLY (function)
DISPLAY POLY GTF DIS POLY GTF
PRINT RESPONSE/F PRI R/F
PRINT RESPONSE/T PRI R/T
PRINT ROOT (function)
PRINT ROOT CLTF DIS ROO CLT
PRINT SCAN/MAG PRI S/M
PRINT SCAN/PHASE PRI S/P
PRINT SPECS PRI SPE
RECOVER REC
STOP STO
Lo TFORM (function) ("from''plane''to''plane) (method)
TFORM CLTF SZ TUSTIN TFO CLT SZ TUS
TURN ANSWER (ON/OFF) TUR ANS (ON/OFF)
TURN CANCEL (ON/OFF) TUR CAN (ON/OFF)
TURN CLOSED (ON/OFF) TUR CLO (ON/OFF)
TURN DECIBELS (ON/OFF) TUR DEC (ON/OFF)
TURN GRID (ON/OFF) TUR GRI (ON/OFF)
TURN HERTZ (ON/OFF) TUR HER (ON/OFF)
TURN MAINMENU (ON/OFF) TUR MAI (ON/OFF)
UPDATE UPD
o
N 1
-
119 5
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I S.4 Discrete commands -- The discrete command consist of

four words. The first word is TFORM. This informs the

computer that a transformation is desired. The second word

PR

. is the name of the transfer function. Presently, ICECAP has
four transfer functions, CLTF , OLTF, GTF, and HTF. The

third word 1is used to inform the computer the '"existing"

. domain and the '"desination" domain e.g. SZ where S is the
"existing'" domain and Z is the ''destination" domain. The

' last word of the command string is the method. There are

! four methods of transformations 1i.e. Impulse, Tustin,
Backward Difference, and Bilinear. The following are some

- (;; typical discrete commands for ICECAP.

] o

TFORM CLTF SZ IMPULSE Which is read: transform CLTF
from the S-domain to the Z-domain via the Impulse method.
The inverse of the above is TFORM CLTF ZS IMPULSE.

Also, if one desires to perform a transformation from

the S-domain to the W'-domain, one may use the word MULTIPLE :

as the fourth word of the command string. This will save
]

time. For example, to transform a function from the S- "]
2 3
- domain to the W-domain requires two transformation. First -
- from the S-domain to the Z-domain and the from the Z-domain 1
]
. to the W-domain. One way to do this is as follows: =]
;' TFORM GTF SZ IMPULSE then TFORM GTF ZW BILINEAR f%i
- Using MULTIPLE as the fourth word will do the same in one ]
L3 -
S command i.e. "3
ff N
) o

-- 9
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TFORM GTF SW MULTIPLE.
The following is a list of a few items to remember

wvhen performing a discrete analysis:

1. If the transfer function is in a domain other than the
S-domain which is the default domain, then the sample time
must be entered prior to performing the analysis. For
example, if one wants to look at the discrete time response,
enter CHANGE TSAMP. 1If, one wants the transfer function to
be displayed with the correct parameters enter

CHANGE PLANE and ICECAP will prompt with a menu of desired
planes.

2. Use the Impulse method to transform a transfer function
with a ZOH or Padea approximation of a ZOH. 1If the transfer

function contains a pole at the origin, then the ZOH will

not work because the present algorithms do not allow
repeated roots. An alternate way to solve this problem is ]
to set the pole of the transfer function near zero i.e. ’f?:
.000001. =
-
a
]
]
N
4
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6. Example Problems.

_ Example 1. This example illustrates the use of function
. C(S1 - A)-IB using example presented in Section 4-16 page
138 [34].

Problem : Determine the transfer functions and draw a block

; diagram for the two-input two-output system represented by
. -0 1 "1 1 0 -2
X = X + U; Y = X
=2 -3_ _0 -2_ 1 0_
'

ICECAP)» DEFINE MATRIX
>: A =¢0 1;-2 -3),B1 = {1 0);B1 = B1',B2 = (1 -2);B2 = B2

i A -

0. 1
-2. -3,
Bl =
i 1.
, 0.
B2 =
i 1.
) 2.
D:cl =4 -2),c2 = 0)
cl =
) 0. =2
c2 =
; 1 0.
.!- D: S o]
e ICECAPD> DISPLAY TRANSFER/F
: 122 B
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ENTER YOUR A,B,C,D MATRICES : A,B1,Cl1,D

OPEN-LOOP TRANSFER FUNCTION (OLTF)
OLK = GAIN*(OLNK/OLDK) = 4.000

GAIN= 1.000

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO(I)
1 ( 1.000 ) OLNK=  4.000

OLTF(S) DENOMINATOR
1 OLDPOLY(I) OLPOLE(I)
1 ( 1.000 )S** 2 ( -2.000 ) + J( 0.0000E+00)
2 ( 3.000 )S** 1 ( -1.000 ) + J( 0.0000E+00)
3 ( 2.000 ) OLDK= 1.000

ENTER YOUR A,B,C,D MATRICES : A,B1,C2,D

\o
OPEN-LOOP TRANSFER FUNCTION (OLTF)
OLK = GAIN*(OLNK/OLDK) = 1.000
GAIN= 1.000
OLTF(S) NUMERATOR
1 OLNPOLY(I) OLZERO(I)
1 ( 1.000 )S*¥* 1 ( -3.000 ) + J( 0.0000E+00)
2 ( 3.000 ) OLNK= 1.000
OLTF(S) DENOMINATOR
1 OLDPOLY(I) OLPOLE(I) R
1 ( 1.000 )S¥*% 2 ( -2.000 ) + J( 0.0000E+00) T
2 ( 3.000 )S** 1 ( -1.000 ) + J( 0.0000E+00)
3 ( 2.000 ) OLDK= 1.000

A ' S
Vot
T WP OO B SR

ENTER YOUR A,B,C,D MATRICES : A,B2,Cl,D

123 ]
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OPEN-LOOP TRANSFER FUNCTION (OLTF)
OLK = GAIN*(CLNK/OLDK) = 4.000
GAIN= 1.000

OLTF(S) NUMERATOR

. 1 OLNPOLY(I) OLZERO(I)
1 ( 1.000 )S¥** 1 ( -1.000 ) + J( 0.0000E+00)
2 ( 1.000 ) OLNK= 4.000

; OLTF(S) DENOMINATOR

- I OLDPOLY(I) OLPOLE(I)
1 < 1.000 )S** 2 ( -2.000 ) + J( 0.0000E+00)
2 3.000 )S** 1 ( -1.000 ) + J( 0.0000E+00)
3 ( 2.000 ) OLDK= 1.000

ENTER YOUR A,B,C,D MATRICES : A,B2,C2,D
OPEN-LOOP TRANSFER FUNCTION (OLTF)

) OLK = GAIN*(OLNK/OLDK) = 1.000
(o GAIN=  1.000
OLTF(S) NUMERATOR
I OLNPOLY (1) OLZERO(I)
1 ( 1.000 = )s*x 1 ( -1.000 ) + J( 0.0000E+00)
2 ( 1.000 ) OLNK= 1.000
OLTF(S) DENOMINATOR
1 OLDPOLY (1) OLPOLE(I)
1 5 1.000 ;s** 2 é -2.000 g + J§ o.ooooz+oog
2 3.000 g% 1 21000 9 + 3¢ 0.0000E+00
3 ( 2.000 ) OLDK= 1.000

ENTER YOUR A,B,C,D MATRICES : $
ICECAP) STOP

Example 2. This example illustrates the use of Riccati

. 1
1 R

R
Y
v- .1
oo
4. .‘
~_A\
‘\1

solver functicn to solve optimal control problem using the

assigned problem 15-3 on page 714 {34].

Problem : Find the feedback coefficient matrix for the -

system and Pl indicated: ;j
% 124 o
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0 1 o0 0~ _ _
A = 0 0 1| ;B = 0 ;Y =]71 2 07X "
-6 -11 -6 _ 10 R
© 2 2 2 2
PI = (X + 0.01X +0.01X + zU ) dt
() 1 2 3
(a) z =1,(b) z = 10,(c) z = 0.1. (d) Compare the time
responses of the system with a step input for each value of z
ICECAP) DEFINE MATRIX
[>: A=¢010;001;-6 -11 -6),B={0 0 10>;B = B',c={1 2 0) .
j A = '
- 0. 1. 0.
_ 0. 0. 1.
| -6. -11  -6.
F e I i
0.
0.
10.
c = e
1 2 o0 -
>: q=4100;00.01 0;00 .01),21 =1,22 = 10,23 = 0.1
Q =
1. 0. 0.
0. 0.01 O.
0. 0. 0.01
z1 =
1.
72 =
10.
23 =
) 0.1
: D:$

125
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ICECAF) DISPLAY RICCATI
ENTER YOUR A,B,Z,Q MATRICES IN THIS ORDER : A,B,Z3,Q

ANS =
-0.8613 0.2398 -0.0382
0.2398 -0.2395 0.0137
-0.0382 0.0137 -0.0146

The solution is not positive definite.
For positive definite solution, type YES for more answer.

SAVE THIS SOLUTION ? N

MORE ANSWERS ? Y

ANS =
-0.8613 0.2398 -0.0382
0.2398 -0.2395 0.0137
-0.0382 0.0137 -0.0146

The solution is not positive definite.
For positive definite solution, type YES for more answer.

SAVE THIS SOLUTION ? N

MORE ANSWERS 7 Y

ANS = ~:
0.7293 0.2398 0.0262 Ao
0.2398 0.1195 0.0137 T
0.0262 0.0137 0.0026 B

The solution is positive definite. s

To save, name it : P3 ffzi

AR

Here is your feedback matrix -

-
ANS =
2.6187 1.3710 0.2569 o
To save, name it : K "
Here is your closed-loop matrix T?j

126
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ANS =
0. 1. 0.
0. . 0. 1.
-32.187 -24.710 -8.569

To save, name it : ACL

MORE ANSWERS ? N

ENTER YOUR A,B,Z,Q MATRICES : §

ICECAP) DISPLAY MATRIX

[>: LONG R,K = K'

K =

.618695387886217

.371016137664886

.256856596831102

[>: PRINT('EX2',P3),PRINT('EX2',6K),PRINT('EX2',ACL)
D: 3

ICECAP) DISPLAY TRANSFER/F

O =N

ENTER YOUR A,B,C,D MATRICES : ACL,B,C,D
OPEN-LOOP TRANSFER FUNCTION (OLTF)

OLK = GAIN*(OLNK/OLDK)= 20.00

GAIN= 1.000

OLTF(S) NUMERATOR
1 OLNPOLY(I) OLZERO(I)
1. ( 1.000 )S** 1 ( -0.5000 ) + J( 0.0000E+00)
2 ( 0.500 ) OLNK= 20.00

OLTF(S) DENOMINATOR
1 OLDPOLY(I) OLPOLE(I)
1 ( 1.000 )S¥** 3 ( -4.834 ) + J( 0.0000E+00)
2 ( 8.569 )S*%* 2 ( ~1.867 ) + J( -1.781 )
3 ( 24.71 )S*% 1 ( -1.867 ) +J(C 1.781 )
4 ( 32.19 ) OLDK= 1.000

o e

[




E R N M M P S A D Tt Bt e S S Tl R S S e g s N __v..v~'".'_'~'—.'-_v—~‘-'-.‘——1\
Y

AN
e

ICECAP USER's MANUAL

ENTER YOUR A,B,C,D MATRICES : $
ICECAP> COPY OLTF CLTF

ICECAP> DISPLAY SPECS H
CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH =  1.00000
RISE TIME: TR= 0.165856
DUPLICATION TIME: TD= 0.244345 o
PEAK TIME: TP= 0.759128 -
SETTLING TIME: TS= 3.24087 ;
PEAK VALUE: MP= 0.766807
FINAL VALUE: FV= 0.310685
ICECAP> DISPLAY EQUATION .-
CONTINUOUS TIME RESPONSE FOR CLTF(S) o
WITH STEP INPUT OF STRENGTH =  1.000000 i
THE TIME FUNCTION IS o
F(T)= e
1.4971 EXP£-4.8345 T) -
2.8234 EXP(-1.8670  T) SIN( 1.7810 *T+ -39.814) o
0.31068 EXP(0.00000E+00T) -
ICECAP> PRINT CLTF o

ICECAP) PRINT SPECS -

ICECAP) PRINT EQUATION o

ICECAP) STOP

Note : To print the data out, try PRINT ANSWER.DAT,EX2.DAT e
Example 3. This example illustrates the use of state L

variable feedback design function using the assigned problem

12-13 on page 708 [34]. o

Problem : Design a state-variable feedback system for the

given plant G (S). The desired complex dominant roots are

x
to have a § = 0.425. For a unit step function the

128
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s

E approximate specifications are M =1.2, t= 0.15 s, and H-

t = 0.3 s (a) Determine a desiragle M(s) thgt will satisfy

tls;ese specifications. Use steps 1 to 6 of the design

% procedure given in Sec. 12-5 to determine k. Draw the root -
locus for G (S)H(S) = -1. From it show the 'good"
properties og state feedback. (b) Obtain y(t) for the final
design. Determine the values of the figures of merit and the o
ramp-error coefficient.

X,

u , A I # 1 ' 10 4 1
19 S¢28 524 100S ¢ 2600 5

AL g—uf S F

v
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X = X : X = -50X + 10X
1 2 2 2 3

X = -50X-105+X 3 X = =25X+1U
3 3 2 4 4 4

0 1 0 0~ —0
. 0 -50 10 0 0
X = X+ U
0 -10 -50 1 0
0 0 0 -25_ 1

From desired specs, the model is

Y(S) 7835831

D
Use ICECAP to solve for k's

ICECAPD> DEFINE CLTF POLY

POLYNOMIAL INPUT OF CLTF

ENTER NUM & DENOM DEGREES (OR SOURCE): 0,4
ENTER 1 NUMER COEFF--HI TO LO: 7835831

CLTF NUMERATOR (CLNPOLY) CLTF ZEROS (CLZERO)
( 0.7836E+07) POLYNOMIAL CONSTANT= 0.7836E+07

.....
.........

...................

R(S) S + 206.6S + 13767.5S + 389106.2S + 7835831

ENTER 5 DENOM COEFF--HI TO LO: 1,206.6,13767.5,389106.2,7835831

.........

........

1,

-
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CLTF DENOMINATOR (CLDPOLY) CLTF POLES (CLPOLE) -
( 1.000 )S** 4 (" -13.30 ) +J3(  28.33 ) at
( 206.6  )s** 3 ( -13.30 ) -28.33 L

P

.
P_.
’
L3
1y
V.
P
b

+ J(
( 0.1377E+05)S** 2 ( -80.00 ) + J( 0.0000E+00)
( 0.3891E+06)S** 1 ( -100.0 ) + J¢( 0.0000E+00Q)
( 0.7836E+07) POLYNOMIAL CONSTANT= 1.0000

CLK= (CLNK/CLDK)= 7835831.

ICECAP> DEFINE MATRIX
[>: A={0 1 0 0;0 ~50 10 0;0 -10 -50 1;0 0 0 -25),B=4 0 0 D;B=B'
A =

1. 0.
-50. 10

-10. -50.
0. 0. =25.

OO0
V=0 O

—HOOO

D:c=1000

C =
1. 0. 0. o. "
>: s = 1

ICECAP> DISPLAY MODERN

ENTER YOUR A,B,C MATRICES : A,B,C ]
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THESE ARE VALID MODELS
— CLTF — OLTF
————3 GTF ——3> HTF
—> PICK ONE : CLTF
KFB =
1.0000 0.0110 0.0006 0.0001
SAVE FEEDBACK MATRIX ? Y
NAME IT : K
THESE ARE VALID MODELS
—— CLTF —» OLTF
—> GTF —3> HTF
—» PICK ONE : §
ICECAP) DISPLAY SPECS

CONTINUOUS TIME RESPONSE FOR CLTF(S)

WITH STEP INPUT OF STRENGTH = 1.000000
RISE TIME: TR= 0.558339E-01
DUPLICATION TIME: TD= 0.963022E-01
PEAK TIME: TP= 0.136230
SETTLING TIME: TS= 0.290197
PEAK VALUE: MP= 1.19772
FINAL VALUE: FV= 1.00000

ICECAPD DISPLAY EQUATION

CONTINUOUS TIME RESPONSE FOR CLTF(S)
WITH STEP INPUT OF STRENGTH = 1.0000000

T%E)TIME FUNCTION IS AR
F(T)=
1.3371 EXP(-13.300 T) SIN( 28.330 *T+ 203.744)
-0.93265 EXP(-80.001 T)

0.47101 EXP(-99.999  T)
1.0000  EXP(0.00000E+00T) 1
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! ICECAPD> DISPLAY MATRIX
[>: DIR
Your current variables are...

K TMAT C B A EPS FLOP EYE e
RAND o

using 49 out of 10005 elements. iﬁ?

[>: K=K';LONG R,K B

K = :
1.000000000000000
0.011048120122606 o
0.000647665052562 et
0.000104137016359 -

[>: PRINT('EX3',K) :

D: s

ICECAP) STOP

[
Q)
| ]
I3

Note : To print the feedback matrix K, try PRINT EX3.DAT
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